首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21781篇
  免费   1112篇
  国内免费   698篇
系统科学   1636篇
丛书文集   408篇
教育与普及   571篇
理论与方法论   378篇
现状及发展   967篇
研究方法   75篇
综合类   19553篇
自然研究   3篇
  2024年   72篇
  2023年   192篇
  2022年   292篇
  2021年   281篇
  2020年   161篇
  2019年   77篇
  2018年   822篇
  2017年   862篇
  2016年   559篇
  2015年   329篇
  2014年   490篇
  2013年   458篇
  2012年   760篇
  2011年   1445篇
  2010年   1345篇
  2009年   1037篇
  2008年   1231篇
  2007年   1560篇
  2006年   649篇
  2005年   649篇
  2004年   591篇
  2003年   539篇
  2002年   504篇
  2001年   499篇
  2000年   527篇
  1999年   892篇
  1998年   862篇
  1997年   872篇
  1996年   766篇
  1995年   697篇
  1994年   681篇
  1993年   523篇
  1992年   487篇
  1991年   451篇
  1990年   388篇
  1989年   359篇
  1988年   286篇
  1987年   207篇
  1986年   107篇
  1985年   38篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1974年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A critical factor in the transmission and pathogenesis of Toxoplasma gondii is the ability to convert from an acute disease-causing, proliferative stage (tachyzoite), to a chronic, dormant stage (bradyzoite). The conversion of the tachyzoite-containing parasitophorous vacuole membrane into the less permeable bradyzoite cyst wall allows the parasite to persist for years within the host to maximize transmissibility to both primary (felids) and secondary (virtually all other warm-blooded vertebrates) hosts. This review presents our current understanding of the latent stage, including the factors that are important in bradyzoite induction and maintenance. Also discussed are the recent studies that have begun to unravel the mechanisms behind stage switching.  相似文献   
992.
The α7 nicotinic receptor is a promising drug target for neurological and inflammatory disorders. Although it is the homomeric member of the family, a novel α7β2 heteromeric receptor has been discovered. To decipher the functional contribution of the β2 subunit, we generated heteromeric receptors with fixed stoichiometry by two different approaches comprising concatenated and unlinked subunits. Receptors containing up to three β2 subunits are functional. As the number of β2 subunits increases in the pentameric arrangement, the durations of channel openings and activation episodes increase progressively probably due to decreased desensitization. The prolonged activation episodes conform the kinetic signature of α7β2 and may have an impact on neuronal excitability. For activation of α7β2 receptors, an α7/α7 binding-site interface is required, thus indicating that the three β2 subunits are located consecutively in the pentameric arrangement. α7-positive allosteric modulators (PAMs) are emerging as novel therapeutic drugs. The presence of β2 in the pentamer affects neither type II PAM potentiation nor activation by an allosteric agonist whereas it impairs type I PAM potentiation. This first single-channel study provides fundamental basis required to decipher the role and function of the novel α7β2 receptor and opens doors to develop selective therapeutic drugs.  相似文献   
993.
994.
Glucose avidity, high glycolysis and l-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and l-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that l-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize l-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of l-lactate formation, transport, and intracellular oxidation and underline the possible role of l-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.  相似文献   
995.
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3–PAR6–aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3–PAR6–aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.  相似文献   
996.
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.  相似文献   
997.
998.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   
999.
Reduced hepatic expression levels of bromodomain-containing protein 7 (BRD7) have been suggested to play a role in the development of glucose intolerance in obesity. However, the molecular mechanism by which BRD7 regulates glucose metabolism has remained unclear. Here, we show that BRD7 increases phosphorylation of glycogen synthase kinase 3β (GSK3β) in response to activation of the insulin receptor-signaling pathway shortly after insulin stimulation and the nutrient-sensing pathway after feeding. BRD7 mediates phosphorylation of GSK3β at the Serine 9 residue and this effect on GSK3β occurs even in the absence of AKT activity. Using both in vitro and in vivo models, we further demonstrate that BRD7 mediates phosphorylation of ribosomal protein S6 kinase (S6K) and leads to increased phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and, therefore, relieves its inhibition of the eukaryotic translation initiation factor 4E (eIF4E). However, the increase in phosphorylation of 4E-BP1 with BRD7 overexpression is blunted in the absence of AKT activity. In addition, using liver-specific BRD7 knockout (LBKO) mice, we show that BRD7 is required for mTORC1 activity on its downstream molecules. These findings show a novel basis for understanding the molecular dynamics of glucose metabolism and suggest the unique function of BRD7 in the regulation of glucose homeostasis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号