首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15962篇
  免费   1808篇
  国内免费   393篇
系统科学   1511篇
丛书文集   344篇
教育与普及   223篇
理论与方法论   341篇
现状及发展   930篇
研究方法   47篇
综合类   14765篇
自然研究   2篇
  2025年   17篇
  2024年   144篇
  2023年   153篇
  2022年   202篇
  2021年   236篇
  2020年   159篇
  2019年   42篇
  2018年   785篇
  2017年   794篇
  2016年   508篇
  2015年   268篇
  2014年   312篇
  2013年   292篇
  2012年   602篇
  2011年   1310篇
  2010年   1119篇
  2009年   894篇
  2008年   984篇
  2007年   1286篇
  2006年   410篇
  2005年   467篇
  2004年   447篇
  2003年   441篇
  2002年   374篇
  2001年   355篇
  2000年   405篇
  1999年   664篇
  1998年   535篇
  1997年   618篇
  1996年   512篇
  1995年   442篇
  1994年   425篇
  1993年   343篇
  1992年   334篇
  1991年   320篇
  1990年   262篇
  1989年   227篇
  1988年   207篇
  1987年   132篇
  1986年   85篇
  1985年   33篇
  1984年   6篇
  1983年   4篇
  1981年   4篇
  1980年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
Dictyostelium discoideum harbors a short (CRN12) and a long coronin (CRN7) composed of one and two beta-propellers, respectively. They are primarily present in the cell cortex and cells lacking CRN12 (corA ) or CRN7 (corB ) have defects in actin driven processes. We compared the characteristics of a mutant cell line (corA /corB ) lacking CRN12 and CRN7 with the single mutants focusing on cytokinesis, phagocytosis, chemotaxis and development. Cytokinesis, uptake of small particles, and developmental defects were not enhanced in the corA /corB strain as compared to the single mutants, whereas motility and phagocytosis of yeast particles were more severely impaired. It appears that although both proteins affect the same processes they do not act in a redundant manner. Rather, they often act antagonistically, which is in accordance with their proposed roles in the actin cytoskeleton where CRN12 acts in actin disassembly whereas CRN7 stabilizes actin filaments and protects them from disassembly.  相似文献   
982.
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.  相似文献   
983.
984.
Human ζ-crystallin is a Zn2+-lacking medium-chain dehydrogenase/reductase (MDR) included in the quinone oxidoreductase (QOR) family because of its activity with quinones. In the present work a novel enzymatic activity was characterized: the double bond α,β-hydrogenation of medium-chain 2-alkenals and 3-alkenones. The enzyme is especially active with lipid peroxidation products such as 4-hydroxyhexenal, and a role in their detoxification is discussed. This specificity is novel in the QOR family, and it is similar to that described in the distantly related alkenal/one reductase family. Moreover, we report the X-ray structure of ζ-crystallin, which represents the first structure solved for a tetrameric Zn2+-lacking MDR, and which allowed the identification of the active-site lining residues. Docking simulations suggest a role for Tyr53 and Tyr59 in catalysis. The kinetics of Tyr53Phe and Tyr59Phe mutants support the implication of Tyr53 in binding/catalysis of alkenal/one substrates, while Tyr59 is involved in the recognition of 4-OH-alkenals.  相似文献   
985.
This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed.  相似文献   
986.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   
987.
Long-term potentiation (LTP) defines persistent increases in neurotransmission strength at synapses that are triggered by specific patterns of neuronal activity. LTP, the most widely accepted molecular model for learning, is best characterised at glutamatergic synapses on dendritic spines. In this context, LTP involves increases in dendritic spine size and the insertion of glutamate receptors into the post-synaptic spine membrane, which together boost post-synaptic responsiveness to neurotransmitters. In dendrites, the material required for LTP is sourced from an organelle termed the endosomal-recycling compartment (ERC), which is localised to the base of dendritic spines. When LTP is induced, material derived from the recycling compartment, which contains α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptors (AMPARs), is mobilised into dendritic spines feeding the increased need for receptors and membrane at the spine neck and head. In this review, we discuss the importance of endosomal-recycling and the role of key proteins which control these processes in the context of LTP.  相似文献   
988.
Toll-like receptors (TLR) are pattern-recognition receptors that recognize a broad variety of structurally conserved molecules derived from microbes. The recognition of TLR ligands functions as a primary sensor of the innate immune system, leading to subsequent indirect activation of the adaptive immunity as well as none-immune cells. However, TLR are also expressed by several T cell subsets, and the respective ligands can directly modulate their effector functions. The present review summarizes the recent findings of γδ T cell modulation by TLR ligands. TLR1/2/6, 3, and 5 ligands can act directly in combination with T cell receptor (TCR) stimulation to enhance cytokine/chemokine production of freshly isolated human γδ T cells. In contrast to human γδ T cells, murine and bovine γδ T cells can directly respond to TLR2 ligands with increased proliferation and cytokine production in a TCR-independent manner. Indirect stimulatory effects on IFN-γ production of human and murine γδ T cells via TLR-ligand activated dendritic cells have been described for TLR2, 3, 4, 7, and 9 ligands. In addition, TLR3 and 7 ligands indirectly increase tumor cell lysis by human γδ T cells, whereas ligation of TLR8 abolishes the suppressive activity of human tumor-infiltrating Vδ1 γδ T cells on αβ T cells and dendritic cells. Taken together, these data suggest that TLR-mediated signals received by γδ T cells enhance the initiation of adaptive immune responses during bacterial and viral infection directly or indirectly. Moreover, TLR ligands enhance cytotoxic tumor responses of γδ T cells and regulate the suppressive capacity of γδ T cells.  相似文献   
989.
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.  相似文献   
990.
Since the discovery of cytoglobin (Cygb) a decade ago, growing amounts of data have been gathered to characterise Cygb biochemistry, functioning and implication in human pathologies. Its molecular roles remain under investigation, but nitric oxide dioxygenase and lipid peroxidase activities have been demonstrated. Cygb expression increases in response to various stress conditions including hypoxia, oxidative stress and fibrotic stimulation. When exogenously overexpressed, Cygb revealed cytoprotection against these factors. Cygb was shown to be upregulated in fibrosis and neurodegenerative disorders and downregulated in multiple cancer types. CYGB was also found within the minimal region of a hereditary tylosis with oesophageal cancer syndrome, and its expression was reduced in tylotic samples. Recently, Cygb has been shown to inhibit cancer cell growth in vitro, thus confirming its suggested tumour suppressor role. This article aims to review the biochemical and functional aspects of Cygb, its involvement in various pathological conditions and potential clinical utility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号