首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18108篇
  免费   30篇
  国内免费   77篇
系统科学   148篇
丛书文集   288篇
教育与普及   48篇
理论与方法论   75篇
现状及发展   7497篇
研究方法   1016篇
综合类   8723篇
自然研究   420篇
  2013年   122篇
  2012年   368篇
  2011年   780篇
  2010年   131篇
  2009年   102篇
  2008年   373篇
  2007年   426篇
  2006年   419篇
  2005年   431篇
  2004年   432篇
  2003年   378篇
  2002年   366篇
  2001年   610篇
  2000年   576篇
  1999年   396篇
  1992年   331篇
  1991年   267篇
  1990年   280篇
  1989年   257篇
  1988年   236篇
  1987年   281篇
  1986年   292篇
  1985年   321篇
  1984年   282篇
  1983年   224篇
  1982年   184篇
  1981年   196篇
  1980年   251篇
  1979年   570篇
  1978年   436篇
  1977年   426篇
  1976年   315篇
  1975年   353篇
  1974年   516篇
  1973年   438篇
  1972年   429篇
  1971年   522篇
  1970年   690篇
  1969年   488篇
  1968年   404篇
  1967年   493篇
  1966年   401篇
  1965年   283篇
  1959年   162篇
  1958年   268篇
  1957年   208篇
  1956年   180篇
  1955年   144篇
  1954年   150篇
  1948年   126篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
921.
Gelsolin superfamily proteins: key regulators of cellular functions   总被引:10,自引:0,他引:10  
Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these proteins.  相似文献   
922.
LmrP from Lactococcus lactis is a 45-kDa membrane protein that confers resistance to a wide variety of lipophilic compounds by acting as a proton motive force-driven efflux pump. This study shows that both the proton motive force and ligand interaction alter the accessibility of cytosolic tryptophan residues to a hydrophilic quencher. The proton motive force mediates an increase of LmrP accessibility toward the external medium and results in higher drug binding. Residues Asp128 and Asp68, from cytosolic loops, are involved in the proton motive force-mediated accessibility change. Ligand binding does not modify the protein accessibility, but the proton motive force-mediated restructuring is prerequisite for a subsequent accessibility change mediated by ligand binding. Asp142 cooperates with other membrane-embedded carboxylic residues to promote a conformational change that increases LmrP accessibility toward the hydrophilic quencher. This drug binding-mediated reorganization may be related to the transition between the high- and low-affinity drug-binding sites and is crucial for drug release in the extracellular medium.  相似文献   
923.
Snake venom thrombin-like enzymes: from reptilase to now   总被引:12,自引:0,他引:12  
The snake venom thrombin-like enzymes (SVTLEs) comprise a number of serine proteases functionally and structurally related to thrombin. Until recently, only nine complete sequences of this subgroup of the serine protease family were known. Over the past 5 years, the primary structure of several SVTLEs has been characterized, and now this family includes several members. Of particular interest is their possible use in pathologies such as thrombosis. The aim of the present review is to summarize the state of the art concerning the evolutionary, structural and biological features of the SVTLEs.Received 16 August 2003; received after revision 26 September 2003; accepted 1 October 2003  相似文献   
924.
Apoptosis is a morphologically distinct form of cell death. It is executed and regulated by several groups of proteins. Bcl-2 family proteins are the main regulators of the apoptotic process acting either to inhibit or promote it. More than 20 members of the family have been identified so far and most have two or more isoforms. Alternative splicing is one of the major mechanisms providing proteomic complexity and functional diversification of the Bcl-2 family proteins. Pro- and anti-apoptotic Bcl-2 family members should function in harmony for the regulation of the apoptosis machinery, and their relative levels are critical for cell fate. Any mechanism breaking down this harmony by changing the relative levels of these antagonistic proteins could contribute to many diseases, including cancer and neurodegenerative disorders. Recent studies have shown that manipulation of the alternative splicing mechanisms could provide an opportunity to restore the proper balance of these regulator proteins. This review summarises current knowledge on the alternative splicing products of Bcl-2-related genes and modulation of splicing mechanisms as a potential therapeutic approach.Received 5 January 2004; received after revision 31 March 2004; accepted 6 April 2004  相似文献   
925.
926.
Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFbeta receptor-activated Smads and antagonized both signaling pathways in human cells.  相似文献   
927.
928.
Aberrant WNT pathway signaling is an early progression event in 90% of colorectal cancers. It occurs through mutations mainly of APC and less often of CTNNB1 (encoding beta-catenin) or AXIN2 (encoding axin-2, also known as conductin). These mutations allow ligand-independent WNT signaling that culminates in abnormal accumulation of free beta-catenin in the nucleus. We previously identified frequent promoter hypermethylation and gene silencing of the genes encoding secreted frizzled-related proteins (SFRPs) in colorectal cancer. SFRPs possess a domain similar to one in the WNT-receptor frizzled proteins and can inhibit WNT receptor binding to downregulate pathway signaling during development. Here we show that restoration of SFRP function in colorectal cancer cells attenuates WNT signaling even in the presence of downstream mutations. We also show that the epigenetic loss of SFRP function occurs early in colorectal cancer progression and may thus provide constitutive WNT signaling that is required to complement downstream mutations in the evolution of colorectal cancer.  相似文献   
929.
930.
Inflammation influences iron balance in the whole organism. A common clinical manifestation of these changes is anemia of chronic disease (ACD; also called anemia of inflammation). Inflammation reduces duodenal iron absorption and increases macrophage iron retention, resulting in low serum iron concentrations (hyposideremia). Despite the protection hyposideremia provides against proliferating microorganisms, this 'iron withholding' reduces the iron available to maturing red blood cells and eventually contributes to the development of anemia. Hepcidin antimicrobial peptide (Hamp) is a hepatic defensin-like peptide hormone that inhibits duodenal iron absorption and macrophage iron release. Hamp is part of the type II acute phase response and is thought to have a crucial regulatory role in sequestering iron in the context of ACD. Mice with deficiencies in the hemochromatosis gene product, Hfe, mounted a general inflammatory response after injection of lipopolysaccharide but lacked appropriate Hamp expression and did not develop hyposideremia. These data suggest a previously unidentified role for Hfe in innate immunity and ACD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号