首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
现状及发展   10篇
研究方法   5篇
综合类   30篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1989年   2篇
  1978年   1篇
  1976年   2篇
  1975年   4篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type ΙΙΙ secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear-factor-κB signalling pathway. We determined the 2.0 ? crystal structure of OspI, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.  相似文献   
42.
Vacancies are prevalent and versatile in solid-state physics and materials science.The role of vacancies in strongly correlated materials,however,remains uncult...  相似文献   
43.
We conducted a meta-analysis of genome-wide association studies of systolic (SBP) and diastolic (DBP) blood pressure in 19,608 subjects of east Asian ancestry from the AGEN-BP consortium followed up with de novo genotyping (n = 10,518) and further replication (n = 20,247) in east Asian samples. We identified genome-wide significant (P < 5 × 10(-8)) associations with SBP or DBP, which included variants at four new loci (ST7L-CAPZA1, FIGN-GRB14, ENPEP and NPR3) and a newly discovered variant near TBX3. Among the five newly discovered variants, we obtained significant replication in the independent samples for all of these loci except NPR3. We also confirmed seven loci previously identified in populations of European descent. Moreover, at 12q24.13 near ALDH2, we observed strong association signals (P = 7.9 × 10(-31) and P = 1.3 × 10(-35) for SBP and DBP, respectively) with ethnic specificity. These findings provide new insights into blood pressure regulation and potential targets for intervention.  相似文献   
44.
Yoshida H  Kawane K  Koike M  Mori Y  Uchiyama Y  Nagata S 《Nature》2005,437(7059):754-758
Definitive erythropoiesis usually occurs in the bone marrow or fetal liver, where erythroblasts are associated with a central macrophage in anatomical units called 'blood islands'. Late in erythropoiesis, nuclei are expelled from the erythroid precursor cells and engulfed by the macrophages in the blood island. Here we show that the nuclei are engulfed by macrophages only after they are disconnected from reticulocytes, and that phosphatidylserine, which is often used as an 'eat me' signal for apoptotic cells, is also used for the engulfment of nuclei expelled from erythroblasts. We investigated the mechanism behind the enucleation and engulfment processes by isolating late-stage erythroblasts from the spleens of phlebotomized mice. When these erythroblasts were cultured, the nuclei protruded spontaneously from the erythroblasts. A weak physical force could disconnect the nuclei from the reticulocytes. The released nuclei contained an undetectable level of ATP, and quickly exposed phosphatidylserine on their surface. Fetal liver macrophages efficiently engulfed the nuclei; masking the phosphatidylserine on the nuclei with the dominant-negative form of milk-fat-globule EGF8 (MFG-E8) prevented this engulfment.  相似文献   
45.
Dislocation multi-junctions and strain hardening   总被引:2,自引:0,他引:2  
At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号