首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
  国内免费   1篇
系统科学   4篇
现状及发展   16篇
研究方法   17篇
综合类   66篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2012年   5篇
  2011年   15篇
  2010年   4篇
  2009年   2篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   10篇
  2003年   8篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
41.
1. Introduction Robust design (RD) techniques based on the concept of building quality into a design are increasingly popular in industry primarily because of their practicality. There have been many attempts to integrate Taguchi’s RD principles with well-established statistical techniques, such as response surface methodology (RSM), in order to model the response directly as a function of control factors (Vining and Myers 1990). RSM is a collection of mathematical and statistical techni…  相似文献   
42.
CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.  相似文献   
43.
Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X?chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X?chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X?chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X?chromosome (Δm) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Δm female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.  相似文献   
44.
45.
The impact of microRNAs on protein output   总被引:2,自引:0,他引:2  
Baek D  Villén J  Shin C  Camargo FD  Gygi SP  Bartel DP 《Nature》2008,455(7209):64-71
MicroRNAs are endogenous approximately 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3' untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.  相似文献   
46.
Lee S  Pirogov A  Kang M  Jang KH  Yonemura M  Kamiyama T  Cheong SW  Gozzo F  Shin N  Kimura H  Noda Y  Park JG 《Nature》2008,451(7180):805-808
The motion of atoms in a solid always responds to cooling or heating in a way that is consistent with the symmetry of the given space group of the solid to which they belong. When the atoms move, the electronic structure of the solid changes, leading to different physical properties. Therefore, the determination of where atoms are and what atoms do is a cornerstone of modern solid-state physics. However, experimental observations of atomic displacements measured as a function of temperature are very rare, because those displacements are, in almost all cases, exceedingly small. Here we show, using a combination of diffraction techniques, that the hexagonal manganites RMnO3 (where R is a rare-earth element) undergo an isostructural transition with exceptionally large atomic displacements: two orders of magnitude larger than those seen in any other magnetic material, resulting in an unusually strong magneto-elastic coupling. We follow the exact atomic displacements of all the atoms in the unit cell as a function of temperature and find consistency with theoretical predictions based on group theories. We argue that this gigantic magneto-elastic coupling in RMnO3 holds the key to the recently observed magneto-electric phenomenon in this intriguing class of materials.  相似文献   
47.
Nanoscale imaging magnetometry with diamond spins under ambient conditions   总被引:1,自引:0,他引:1  
Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy has succeeded in detecting single electrons and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.  相似文献   
48.
<正> Superresolution is an image processing technique that estimates an original high-resolutionimage from its low-resolution and degraded observations.In superresolution tasks,there have beenproblems regarding the computational cost for the estimation of high-dimensional variables.Theseproblems are now being overcome by the recent development of fast computers and the developmentof powerful computational techniques such as variational Bayesian approximation.This paper reviewsa Bayesian treatment of the superresolution problem and presents its extensions based on hierarchicalmodeling by employing hidden variables.  相似文献   
49.
50.
The viscosity of CaF2-CaO-Al2O3-MgO-(TiO2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO2 content in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ/mol to 79.40 kJ/mol with increasing TiO2 content in the slag. The introduction of TiO2 into the slag played a destructive role in Al-O-Al structural units and Q4 units by forming simpler structural units of Q2 and Ti2O64- chain. The amount of Al-O-Al significantly decreased with increasing TiO2 content. The relative fraction of Q4 units in the[AlO4]5--tetrahedral units shows a decreasing trend, whereas the relative fraction of Q2 units and Ti2O64- chain increases with increasing TiO2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO2 content. The variation in slag structure is consistent with the change in measured viscosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号