首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
现状及发展   10篇
研究方法   16篇
综合类   43篇
  2012年   8篇
  2011年   10篇
  2010年   2篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   9篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1958年   1篇
  1957年   1篇
  1956年   5篇
  1948年   2篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Bae SH  Bae KH  Kim JA  Seo YS 《Nature》2001,412(6845):456-461
Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.  相似文献   
25.
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.  相似文献   
26.
Hsieh D  Qian D  Wray L  Xia Y  Hor YS  Cava RJ  Hasan MZ 《Nature》2008,452(7190):970-974
When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may incorporate 'light-like' bulk carriers and spin-textured surface currents.  相似文献   
27.
White PM  Doetzlhofer A  Lee YS  Groves AK  Segil N 《Nature》2006,441(7096):984-987
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.  相似文献   
28.
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P?相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号