首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47021篇
  免费   254篇
  国内免费   571篇
系统科学   1218篇
丛书文集   154篇
教育与普及   306篇
理论与方法论   509篇
现状及发展   29994篇
研究方法   202篇
综合类   13275篇
自然研究   2188篇
  2013年   806篇
  2012年   433篇
  2011年   2432篇
  2009年   637篇
  2008年   635篇
  2007年   685篇
  2006年   790篇
  2005年   982篇
  2004年   2121篇
  2003年   1712篇
  2002年   1374篇
  2001年   1091篇
  2000年   597篇
  1999年   784篇
  1998年   641篇
  1997年   775篇
  1996年   531篇
  1995年   399篇
  1994年   680篇
  1993年   688篇
  1992年   718篇
  1991年   647篇
  1990年   694篇
  1989年   522篇
  1988年   511篇
  1987年   501篇
  1986年   579篇
  1985年   710篇
  1984年   661篇
  1983年   568篇
  1982年   733篇
  1981年   773篇
  1980年   836篇
  1979年   1140篇
  1978年   1075篇
  1977年   1081篇
  1976年   953篇
  1975年   913篇
  1974年   683篇
  1973年   1008篇
  1972年   1078篇
  1971年   1028篇
  1970年   988篇
  1969年   975篇
  1968年   940篇
  1967年   790篇
  1966年   655篇
  1965年   556篇
  1964年   452篇
  1963年   414篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
A hallmark of resistance to type I interferons (IFNs) is the lack of antiproliferative responses. We show here that costimulation with IFN-alpha and transforming growth factor beta-1 (TGF-beta) potentiates antiproliferative activity in a sensitive (ME15) and resistant (D10) human melanoma cell line. A DNA microarray-based search for proliferation control genes involved that are cooperatively activated by IFN-alpha and TGF-beta, yielded 28 genes. Among these are the insulin-like growth factor-binding protein 3 (IGFBP3) and the calcium-binding protein S100A2; we demonstrate, that recombinant IGFBP3 protein is a potent growth inhibitor requiring TGF-beta activity. The antiproliferative activity of S100A2 is significantly enhanced by IFN-alpha in stably transfected ME15 or D10 cell lines. We show for the first time that IFN-alpha is a potent inducer of intracellular calcium release required for activation of S100A2. Our study provides a functional link between IFN-alpha and TGF-beta signaling and extends the function of IFN signaling to calcium-sensitive processes.  相似文献   
993.
The effects of different marine derived agents were studied in A549 cell growth. These drugs induced cell cycle arrest at the G2-M phase associated with the up-regulation of GADD45alpha-gamma and down-regulation of c-Myc. In treated cells, GADD45alpha-gamma and c-Myc were up- and down-regulated, respectively. A cascade of events leading to apoptotic mitochondrial 'intrinsic' pathway was observed in treated cells: (1) dephosphorylation of BAD serine136; (2) BAD dissociation from 14-3-3 followed by its association with BCL-XL; (3) cytochrome c release; (4) caspase-3 activation, and (5) cleavage of vimentin. Caspase(s) inhibitor prevented the formation of cleavage products and, in turn, apoptosis was inhibited through a p53-independent mechanism. Moreover, these compounds did not activate NF-kappaB. Our findings may offer new insights into the mechanisms of action of these agents in A549 cells. The better understanding of their effects might be important to fully exploit the potential of these new drugs.  相似文献   
994.
995.
996.
Although a change in life-style is often the method of first choice for lipid lowering, lipid-lowering drugs, in general, help to control elevated levels of different forms of lipids in patients with hyperlipidemia. While one group of drugs, statins, lowers cholesterol, the other group, fibrates, is known to take care of fatty acids and triglycerides. In addition, other drugs, such as ezetimibe, colesevelam, torcetrapib, avasimibe, implitapide, and niacin are also being considered to manage hyperlipidemia. As lipids are very critical for cardiovascular diseases, these drugs reduce fatal and nonfatal cardiovascular abnormalities in the general population. However, a number of recent studies indicate that apart from their lipidlowering activities, statins and fibrates exhibit multiple functions to modulate intracellular signaling pathways, inhibit inflammation, suppress the production of reactive oxygen species, and modulate T cell activity. Therefore, nowadays, these drugs are being considered as possible therapeutics for several forms of human disorders including cancer, autoimmunity, inflammation, and neurodegeneration. Here I discuss these applications in the light of newly discovered modes of action of these drugs. Received 5 September 2005; received after revision 29 December 2005; accepted 26 January 2006  相似文献   
997.
Phytanic acid is a branched-chain fatty acid that accumulates in a variety of metabolic disorders. High levels of phytanic acid found in patients can exceed the millimolar range and lead to severe symptoms. Degradation of phytanic acid takes place by α-oxidation inside the peroxisome. A deficiency of its breakdown, leading to elevated levels, can result from either a general peroxisomal dysfunction or from a defect in one of the enzymes involved in α-oxidation. Research on Refsum disease, belonging to the latter group of disorders and characterized by a deficiency of the first enzyme of α-oxidation, has extended our knowledge of phytanic acid metabolism and pathology of the disease greatly over the past few decades. This review will centre on this research on phytanic acid: its origin, the mechanism by which its α-oxidation takes place, its role in human disease and the way it is produced from phytol. Received 4 October 2005; received after revision 24 February 2006; accepted 26 April 2006  相似文献   
998.
In contrast to the considerable interest in the oncogene ornithine decarboxylase (ODC) and in the family of antizymes with regard to cell proliferation and tumorigenesis, the endogenous antizyme inhibitor (AZI) has been less well studied. AZI is highly homologous to the enzyme ODC but does not possess any decarboxylase activity. Elevated ODC activity is associated with most forms of human malignancies. Antizymes bind ODC, inhibit ODC activity and promote the ubiquitin-independent degradation of ODC. Consequently they are proposed as tumor suppressors. In particular, the most studied member of the antizyme family, antizyme 1, has been demonstrated to play a role in tumor suppression. AZI inactivates all members of the antizyme family, reactivates ODC and prevents the proteolytic degradation of ODC, which may suggest a role for AZI in tumor progression. Received 9 December 2005; received after revision 13 April 2006; accepted 1 June 2006  相似文献   
999.
Myelin basic protein: a multifunctional protein   总被引:1,自引:1,他引:0  
Myelin basic protein (MBP), the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. A member of the ‘intrinsically disordered’ or conformationally adaptable protein family, it also appears to have several other functions. It can interact with a number of polyanionic proteins including actin, tubulin, Ca2+-calmodulin, and clathrin, and negatively charged lipids, and acquires structure on binding to them. It may act as a membrane actin-binding protein, which might allow it to participate in transmission of extracellular signals to the cytoskeleton in oligodendrocytes and tight junctions in myelin. Some size isoforms of MBP are transported into the nucleus and thus they may also bind polynucleotides. Extracellular signals received by myelin or cultured oligodendrocytes cause changes in phosphorylation of MBP, suggesting that MBP is also involved in signaling. Further study of this very abundant protein will reveal how it is utilized by the oligodendrocyte and myelin for different purposes. Received 2 March 2006; received after revision 12 April 2006; accepted 16 May 2006  相似文献   
1000.
Based on the classification of bacterial lipolytic enzymes, family I.3 lipase is a member of the large group of Gram-negative bacterial true lipases. This lipase family is distinguished from other families not only by the amino acid sequence, but also by the secretion mechanism. Lipases of family I.3 are secreted via the well-known type I secretion system. Like most of proteins secreted via this system, family I.3 lipases are composed of two domains with distinct yet related functions. Recent years have seen an increasing amount of research on this lipase family, in terms of isolation, secretion mechanism, as well as biochemical and biophysical studies. This review describes our current knowledge on the structure-function relationships of family I.3 lipase, with an emphasis on its secretion mechanism. Received 18 April 2006; received after revision 3 July 2006; accepted 24 August 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号