首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3190篇
  免费   69篇
  国内免费   114篇
系统科学   94篇
丛书文集   51篇
教育与普及   76篇
理论与方法论   4篇
现状及发展   630篇
研究方法   79篇
综合类   2414篇
自然研究   25篇
  2023年   33篇
  2022年   60篇
  2021年   54篇
  2020年   50篇
  2019年   34篇
  2018年   37篇
  2017年   57篇
  2016年   49篇
  2015年   98篇
  2014年   114篇
  2013年   115篇
  2012年   146篇
  2011年   132篇
  2010年   124篇
  2009年   163篇
  2008年   154篇
  2007年   160篇
  2006年   119篇
  2005年   112篇
  2004年   114篇
  2003年   67篇
  2002年   95篇
  2001年   131篇
  2000年   94篇
  1999年   104篇
  1998年   31篇
  1997年   22篇
  1996年   27篇
  1992年   38篇
  1991年   25篇
  1990年   23篇
  1989年   24篇
  1988年   29篇
  1985年   24篇
  1979年   31篇
  1978年   20篇
  1976年   23篇
  1975年   32篇
  1974年   20篇
  1973年   28篇
  1972年   19篇
  1971年   44篇
  1970年   35篇
  1969年   31篇
  1968年   37篇
  1967年   33篇
  1966年   33篇
  1965年   22篇
  1958年   24篇
  1957年   21篇
排序方式: 共有3373条查询结果,搜索用时 15 毫秒
71.
阐述英国当代著名的后现代主义作家约翰·福尔斯通过代表作《魔法师》,从自然生态、社会生态、道德生态的独特的、生态整体主义的视角,为读者揭示了生态失范的后现代社会的、人类赖以生存的环境状况。生态的失衡,给自然环境乃至人类的精神世界带来的种种危机,具有一定的社会和文化渊源。福尔斯希望建立的人与自然、人与人和谐相处的生态观,对于人类社会的生存、发展、前途和命运具有深远、现实的指导意义。  相似文献   
72.
On-chip natural assembly of silicon photonic bandgap crystals.   总被引:20,自引:0,他引:20  
Y A Vlasov  X Z Bo  J C Sturm  D J Norris 《Nature》2001,414(6861):289-293
Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.  相似文献   
73.
鄂尔多斯盆地NL油田延9流动单元研究   总被引:2,自引:1,他引:1  
从国内外流动单元研究现状出发,结合研究区实际的岩心、地质、测井和生产动态资料,根据流动带指标和岩性-物性划分法划分流动单元.研究中遵循单井、剖面到平面的思路,开展了流动单元特征参数优选、取心井流动单元分析、非取心井的流动单元划分工作.运用动态资料验证流动单元划分的合理性,进行了流动单元剖面、平面特征研究及流动单元生产能力分析.研究表明,所选用的渗透率、孔隙度和流动层带指标IFZ3个参数可满足本区流动单元划分要求,研究区延9储层流动单元可划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ类.  相似文献   
74.
Programmable and autonomous computing machine made of biomolecules.   总被引:42,自引:0,他引:42  
Y Benenson  T Paz-Elizur  R Adar  E Keinan  Z Livneh  E Shapiro 《Nature》2001,414(6862):430-434
Devices that convert information from one form into another according to a definite procedure are known as automata. One such hypothetical device is the universal Turing machine, which stimulated work leading to the development of modern computers. The Turing machine and its special cases, including finite automata, operate by scanning a data tape, whose striking analogy to information-encoding biopolymers inspired several designs for molecular DNA computers. Laboratory-scale computing using DNA and human-assisted protocols has been demonstrated, but the realization of computing devices operating autonomously on the molecular scale remains rare. Here we describe a programmable finite automaton comprising DNA and DNA-manipulating enzymes that solves computational problems autonomously. The automaton's hardware consists of a restriction nuclease and ligase, the software and input are encoded by double-stranded DNA, and programming amounts to choosing appropriate software molecules. Upon mixing solutions containing these components, the automaton processes the input molecule via a cascade of restriction, hybridization and ligation cycles, producing a detectable output molecule that encodes the automaton's final state, and thus the computational result. In our implementation 1012 automata sharing the same software run independently and in parallel on inputs (which could, in principle, be distinct) in 120 microl solution at room temperature at a combined rate of 109 transitions per second with a transition fidelity greater than 99.8%, consuming less than 10-10 W.  相似文献   
75.
Superconductivity in CaCuO2 as a result of field-effect doping.   总被引:2,自引:0,他引:2  
Understanding the doping mechanisms in the simplest superconducting copper oxide-the infinite-layer compound ACuO2 (where A is an alkaline earth metal)-is an excellent way of investigating the pairing mechanism in high-transition-temperature (high-Tc) superconductors more generally. Gate-induced modulation of the carrier concentration to obtain superconductivity is a powerful means of achieving such understanding: it minimizes the effects of potential scattering by impurities, and of structural modifications arising from chemical dopants. Here we report the transport properties of thin films of the infinite-layer compound CaCuO2 using field-effect doping. At high hole- and electron-doping levels, superconductivity is induced in the nominally insulating material. Maximum values of Tc of 89 K and 34 K are observed respectively for hole- and electron-type doping of around 0.15 charge carriers per CuO2. We can explore the whole doping diagram of the CuO2 plane while changing only a single electric parameter, the gate voltage.  相似文献   
76.
77.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   
78.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
79.
Debaille V  Brandon AD  Yin QZ  Jacobsen B 《Nature》2007,450(7169):525-528
Resolving early silicate differentiation timescales is crucial for understanding the chemical evolution and thermal histories of terrestrial planets. Planetary-scale magma oceans are thought to have formed during early stages of differentiation, but the longevity of such magma oceans is poorly constrained. In Mars, the absence of vigorous convection and plate tectonics has limited the scale of compositional mixing within its interior, thus preserving the early stages of planetary differentiation. The SNC (Shergotty-Nakhla-Chassigny) meteorites from Mars retain 'memory' of these events. Here we apply the short-lived 146Sm-142Nd and the long-lived 147Sm-143Nd chronometers to a suite of shergottites to unravel the history of early silicate differentiation in Mars. Our data are best explained by progressive crystallization of a magma ocean with a duration of approximately 100 million years after core formation. This prolonged solidification requires the existence of a primitive thick atmosphere on Mars that reduces the cooling rate of the interior.  相似文献   
80.
The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号