首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   0篇
  国内免费   1篇
系统科学   8篇
理论与方法论   1篇
现状及发展   85篇
研究方法   36篇
综合类   286篇
自然研究   20篇
  2017年   3篇
  2014年   3篇
  2013年   3篇
  2012年   17篇
  2011年   38篇
  2010年   8篇
  2009年   2篇
  2008年   20篇
  2007年   15篇
  2006年   15篇
  2005年   13篇
  2004年   10篇
  2003年   15篇
  2002年   12篇
  2001年   25篇
  2000年   21篇
  1999年   10篇
  1995年   3篇
  1993年   1篇
  1992年   15篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1980年   7篇
  1979年   1篇
  1978年   11篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1971年   13篇
  1970年   20篇
  1969年   5篇
  1968年   10篇
  1967年   10篇
  1966年   6篇
  1965年   4篇
  1964年   3篇
  1963年   2篇
  1960年   1篇
  1958年   1篇
排序方式: 共有436条查询结果,搜索用时 0 毫秒
141.
Wilson G 《Nature》2005,436(7050):600
  相似文献   
142.
The harmonic oscillator is one of the simplest physical systems but also one of the most fundamental. It is ubiquitous in nature, often serving as an approximation for a more complicated system or as a building block in larger models. Realizations of harmonic oscillators in the quantum regime include electromagnetic fields in a cavity and the mechanical modes of a trapped atom or macroscopic solid. Quantized interaction between two motional modes of an individual trapped ion has been achieved by coupling through optical fields, and entangled motion of two ions in separate locations has been accomplished indirectly through their internal states. However, direct controllable coupling between quantized mechanical oscillators held in separate locations has not been realized previously. Here we implement such coupling through the mutual Coulomb interaction of two ions held in trapping potentials separated by 40?μm (similar work is reported in a related paper). By tuning the confining wells into resonance, energy is exchanged between the ions at the quantum level, establishing that direct coherent motional coupling is possible for separately trapped ions. The system demonstrates a building block for quantum information processing and quantum simulation. More broadly, this work is a natural precursor to experiments in hybrid quantum systems, such as coupling a trapped ion to a quantized macroscopic mechanical or electrical oscillator.  相似文献   
143.
144.
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3′-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.  相似文献   
145.
Quantum annealing with manufactured spins   总被引:1,自引:0,他引:1  
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.  相似文献   
146.
The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system.  相似文献   
147.
Stamen specification and anther development in rice   总被引:5,自引:0,他引:5  
Male reproductive development is a complex biological process which includes the formation of the stamen with differentiated anther tissues, in which microspores/pollens are generated, then anther dehiscence and subsequently pollination. Stamen specification and anther development involve a number of extraordinary events such as meristem transition, cell division and differentiation, cell to cell communication, etc., which need the cooperative interaction of sporophytic and gametophytic genes. The advent of various tools for rice functional gene identification, such as complete genome sequence, genome-wide microarrays, collections of mutants, has greatly facilitated our understanding of mechanisms of rice stamen specification and anther development. Male sterile lines are critical for hybrid rice breeding, therefore understanding these processes will not only contribute greatly to the basic knowledge of crop developmental biology, but also to the development of new varieties for hybrid rice breeding in the future.  相似文献   
148.
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.  相似文献   
149.
The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.  相似文献   
150.
Mitotic mechanism based on intrinsic microtubule behaviour   总被引:42,自引:0,他引:42  
R L Margolis  L Wilson  B I Keifer 《Nature》1978,272(5652):450-452
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号