首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3192篇
  免费   12篇
  国内免费   12篇
系统科学   74篇
丛书文集   24篇
教育与普及   6篇
理论与方法论   5篇
现状及发展   1562篇
研究方法   133篇
综合类   1373篇
自然研究   39篇
  2012年   43篇
  2011年   74篇
  2009年   18篇
  2008年   58篇
  2007年   60篇
  2006年   55篇
  2005年   55篇
  2004年   85篇
  2003年   57篇
  2002年   50篇
  2001年   102篇
  2000年   98篇
  1999年   65篇
  1993年   21篇
  1992年   83篇
  1991年   46篇
  1990年   43篇
  1989年   37篇
  1988年   26篇
  1987年   40篇
  1986年   46篇
  1985年   51篇
  1984年   58篇
  1983年   31篇
  1982年   33篇
  1981年   26篇
  1980年   45篇
  1979年   96篇
  1978年   61篇
  1977年   80篇
  1976年   53篇
  1975年   53篇
  1974年   103篇
  1973年   86篇
  1972年   75篇
  1971年   83篇
  1970年   117篇
  1969年   104篇
  1968年   113篇
  1967年   97篇
  1966年   106篇
  1965年   74篇
  1964年   31篇
  1959年   27篇
  1958年   49篇
  1957年   39篇
  1956年   44篇
  1955年   31篇
  1954年   25篇
  1948年   32篇
排序方式: 共有3216条查询结果,搜索用时 0 毫秒
781.
The DNA sequence of human chromosome 22   总被引:75,自引:0,他引:75  
Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.  相似文献   
782.
Blake GA  Qi C  Hogerheijde MR  Gurwell MA  Muhleman DO 《Nature》1999,398(6724):213-216
Comets are some of the most primitive bodies left over from the Solar System's early history. They may preserve both interstellar material and material from the proto-solar nebula, and so studies of their volatile components can provide clues about the evolution of gases and ices, as a collapsing molecular cloud transforms into a mature planetary system. Previous observations of emission from rotational transitions in molecules have averaged over large areas of the inner coma, and therefore include both molecules that sublimed from the nucleus and those that result from subsequent chemical processes in the coma Here we present high-resolution observations of emission from the molecules HNC, DCN and HDO associated with comet Hale-Bopp. Our data reveal arc-like structures-icy jets-offset from (but close to) the nucleus. The measured abundance ratios on 1-3" scales are substantially different from those on larger scales, and cannot be accounted for by models of chemical processes in the coma; they are, however, similar to the values observed in the cores of dense interstellar clouds and young stellar objects. We therefore propose that sublimation from millimetre-sized icy grains ejected from the nucleus provides access to relatively unaltered volatiles. The D/H ratios inferred from our data suggest that, by mass, Hale-Bopp (and by inference the outer regions of the early solar nebula) consists of > or =15-40% of largely unprocessed interstellar material.  相似文献   
783.
784.
785.
786.
The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.  相似文献   
787.
Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.  相似文献   
788.
Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity--which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes--has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.  相似文献   
789.
In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll-protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10-20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)-light-harvesting 1 (RC-LH1-PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow 'energy conduits' of LH2 just two or three complexes wide.  相似文献   
790.
The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5a strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system oc- curred only at a certain depth under the surface of M63-0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号