首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
研究方法   1篇
综合类   55篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1967年   1篇
排序方式: 共有56条查询结果,搜索用时 93 毫秒
41.
Understanding the fundamental excitations of many-fermion systems is of significant current interest. In atomic nuclei with even numbers of neutrons and protons, the low-lying excitation spectrum is generally formed by nucleon pair breaking and nuclear vibrations or rotations. However, for certain numbers of protons and neutrons, a subtle rearrangement of only a few nucleons among the orbitals at the Fermi surface can result in a different elementary mode: a macroscopic shape change. The first experimental evidence for this phenomenon came from the observation of shape coexistence in 16O (ref. 4). Other unexpected examples came with the discovery of fission isomers and super-deformed nuclei. Here we find experimentally that the lowest three states in the energy spectrum of the neutron deficient nucleus 186Pb are spherical, oblate and prolate. The states are populated by the alpha-decay of a parent nucleus; to identify them, we combine knowledge of the particular features of this decay with sensitive measurement techniques (a highly efficient velocity filters with strong background reduction, and an extremely selective recoil-alpha-electron coincidence tagging methods). The existence of this apparently unique shape triplet is permitted only by the specific conditions that are met around this particular nucleus.  相似文献   
42.
A role for Wnt signalling in self-renewal of haematopoietic stem cells   总被引:92,自引:0,他引:92  
Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated beta-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.  相似文献   
43.
44.
Livet J  Weissman TA  Kang H  Draft RW  Lu J  Bennis RA  Sanes JR  Lichtman JW 《Nature》2007,450(7166):56-62
Detailed analysis of neuronal network architecture requires the development of new methods. Here we present strategies to visualize synaptic circuits by genetically labelling neurons with multiple, distinct colours. In Brainbow transgenes, Cre/lox recombination is used to create a stochastic choice of expression between three or more fluorescent proteins (XFPs). Integration of tandem Brainbow copies in transgenic mice yielded combinatorial XFP expression, and thus many colours, thereby providing a way to distinguish adjacent neurons and visualize other cellular interactions. As a demonstration, we reconstructed hundreds of neighbouring axons and multiple synaptic contacts in one small volume of a cerebellar lobe exhibiting approximately 90 colours. The expression in some lines also allowed us to map glial territories and follow glial cells and neurons over time in vivo. The ability of the Brainbow system to label uniquely many individual cells within a population may facilitate the analysis of neuronal circuitry on a large scale.  相似文献   
45.
46.
Li GW  Oh E  Weissman JS 《Nature》2012,484(7395):538-541
  相似文献   
47.
A new subunit of the human T-cell antigen receptor complex   总被引:17,自引:0,他引:17  
A M Weissman  L E Samelson  R D Klausner 《Nature》1986,324(6096):480-482
The T-cell antigen receptor binds antigen in association with a cell surface molecule encoded by the major histocompatibility complex (MHC). MHC restricted recognition of antigen by this receptor leads to the complex pattern of programmed gene expression that characterizes T-cell activation. The eventual understanding of human T-cell function will require the complete elucidation of the structure of the human T-cell antigen receptor. On human T cells, clonally determined, disulphide-linked alpha and beta chains of the receptor are non-covalently and stoichiometrically associated with three additional polypeptides known as the T3 complex. These receptor subunits are glycoproteins of relative molecular mass (Mr) 25,000 (25K) and 20K (gamma and delta) and a non-glycosylated 20K protein (epsilon). Our studies of murine T cells show that the mouse T-cell antigen receptor consists of at least seven distinct polypeptide chains. In addition to clonotypic alpha and beta chains, the murine complex consists of glycoproteins of 26K and 21K and endoglycosaminidase F (endo F)-insensitive polypeptides of 25K, 21K and 16K. The latter, which we have termed zeta (zeta), exists as a homodimer within the complex. The 26K component (gp26) has been shown to be the murine analogue of the human delta chain. Other cross species homologies remain to be established, however none of the described human receptor components appear similar to the murine zeta polypeptide. We report here the use of an antiserum raised against the murine zeta subunit to identify a previously unrecognized component of the human T-cell antigen receptor. This human protein is T-cell specific and biochemically similar to the murine zeta polypeptide.  相似文献   
48.
G Kraal  I L Weissman  E C Butcher 《Nature》1982,298(5872):377-379
Germinal centres are histologically defined aggregates of blast cells that occur in B-cell areas of lymphoid tissues after antigenic stimulation. They are believed to be associated with the development of B-cell memory and plasma cell (especially secondary, IgG and IgA) responses. Recent studies of murine lymphoid tissues have defined cell-surface markers that distinguish germinal centre B cells from other mature B cells, permitting their identification and characterization in cell suspensions. Here we have used these markers to define and study germinal centre cells in lympho nodes, and have found that they constitute a unique population of B cells which (1) arises in response to antigenic stimulation, (2) contains nearly all of the demonstrably antigen-specific B cells in the stimulated organ, (3) bears surface IgM after primary stimulation and (4) as a population, demonstrates isotype switching to a predominant population, demonstrates isotype switching to a predominant surface IgG phenotype after secondary stimulation with specific surface IgG phenotype after secondary stimulation with specific antigen. These findings demonstrate that germinal centres are a major site of proliferation and differentiation of antigen-specific B cells in vivo, and suggest that the germinal centre microenvironment may have an important role in heavy chain class switching during B-cell responses.  相似文献   
49.
Conboy IM  Conboy MJ  Wagers AJ  Girma ER  Weissman IL  Rando TA 《Nature》2005,433(7027):760-764
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.  相似文献   
50.
Conformational diversity in a yeast prion dictates its seeding specificity   总被引:4,自引:0,他引:4  
Chien P  Weissman JS 《Nature》2001,410(6825):223-227
A perplexing feature of prion-based inheritance is that prions composed of the same polypeptide can evoke different phenotypes (such as distribution of brain lesions), even when propagated in genetically identical hosts. The molecular basis of this strain diversity and the relationship between strains and barriers limiting transmission between species remain unclear. We have used the yeast prion phenomenon [PSI+]4 to investigate these issues and examine the role that conformational differences may have in prion strains. We have made a chimaeric fusion between the prion domains of two species (Saccharomyces cerevisae and Candida albicans) of Sup35, the protein responsible for [PSI+]. Here we report that this chimaera forms alternate prion strains in vivo when initiated by transient overexpression of different Sup35 species. Similarly, in vitro the purified chimaera, when seeded with different species of Sup35 fibres, establishes and propagates distinct amyloid conformations. These fibre conformations dictate amyloid seeding specificity: a chimaera seeded by S. cerevisiae fibres efficiently catalyses conversion of S. cerevisiae Sup35 but not of C. albicans Sup35, and vice versa. These and other considerations argue that heritable prion strains result from self-propagating conformational differences within the prion protein itself. Moreover, these conformational differences seem to act in concert with the primary structure to determine a prion's propensity for transmission across a species barrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号