首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
现状及发展   4篇
研究方法   16篇
综合类   57篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1970年   3篇
  1969年   1篇
  1967年   2篇
  1948年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
31.
A low mass for Mars from Jupiter's early gas-driven migration   总被引:1,自引:0,他引:1  
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.  相似文献   
32.
Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase machinery. However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to mouse macrophage bactericidal activity, although the mechanisms linking innate immune signalling to mitochondria for mROS generation remain unclear. Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of a TLR signalling adaptor, tumour necrosis factor receptor-associated factor 6 (TRAF6), to mitochondria, where it engages the protein ECSIT (evolutionarily conserved signalling intermediate in Toll pathways), which is implicated in mitochondrial respiratory chain assembly. Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT- and TRAF6-depleted macrophages have decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS levels by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results reveal a novel pathway linking innate immune signalling to mitochondria, implicate mROS as an important component of antibacterial responses and further establish mitochondria as hubs for innate immune signalling.  相似文献   
33.
A threshold effect of the major isoforms of NCAM on neurite outgrowth   总被引:28,自引:0,他引:28  
P Doherty  M Fruns  P Seaton  G Dickson  C H Barton  T A Sears  F S Walsh 《Nature》1990,343(6257):464-466
Interactions between recognition molecules on the surface of neuronal growth cones and guidance cues present in the local cellular environment are thought to account for the growth of neurites in the highly stereospecific manner that contributes to correct target cell innervation. In vitro assays have been used to identify candidate molecular components of this system, either directly by demonstrating their ability to promote neurite outgrowth, or indirectly by the ability of specific antibodies to inhibit neurite outgrowth. The role of the neural cell adhesion molecule (NCAM) in pathway finding is not fully understood. Some immunological studies support a positive role; others do not, and it has been reported that purified NCAM does not support neurite outgrowth. We have previously shown that an arbitrary biochemical index of neurite outgrowth, the relative level of immunoreactive neurofilament protein, is increased when human and rat dorsal root ganglion neurons are cultured on monolayers of cells expressing transfected human NCAM. But, the complexity of growth precluded a simple morphological analysis and we did not determine the 'dose-response' relationship between NCAM expression and neuronal response. Here, we report on the morphology of rat cerebellar neurons cultured on monolayers of 3T3 cells transfected with complementary DNAs encoding all of the main NCAM isoforms found in cells such as astrocytes, Schwann cells and skeletal muscle. The data indicate that both transmembrane and glycosyl-phosphatidylinositol linked NCAM isoforms are potent substrates for neurite extension. A critical threshold value of NCAM expression is required for increased neurite outgrowth. Above this threshold, small increases in NCAM induce substantial increases in neurite outgrowth.  相似文献   
34.
Enhanced myogenesis in NCAM-transfected mouse myoblasts   总被引:16,自引:0,他引:16  
G Dickson  D Peck  S E Moore  C H Barton  F S Walsh 《Nature》1990,344(6264):348-351
The fusion of mononucleate precursor myoblasts to form the multinucleated skeletal muscle fibre is proceeded by a series of complex cell-cell interactions but the cell-surface molecules involved in these events have not been characterized. During myogenesis in vivo and in vitro, expression of the neural cell adhesion molecule (NCAM) undergoes an isoform transition that precisely correlates with terminal myoblast differentiation and myotube formation. Altered processing of RNA results in the replacement of the transmembrane NCAM (relative molecular mass, 145,000 (145K) in proliferating myoblasts by a predominant 125K NCAM form linked to glycosyl phosphatidylinositol in myotubes. We now report that mouse myoblasts transfected to constitutively express the human muscle-specific 125K glycosylphosphatidylinositol-linked NCAM isoform more readily fuse to form myotubes. This suggests that NCAM plays a part in myoblast fusion and that the isoform switch may promote this function.  相似文献   
35.
36.
Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.  相似文献   
37.
Fortin PD  Walsh CT  Magarvey NA 《Nature》2007,448(7155):824-827
The unrelenting emergence of antibiotic-resistant bacterial pathogens demands the investigation of antibiotics with new modes of action. The pseudopeptide antibiotic andrimid is a nanomolar inhibitor of the bacterial acetyl-CoA carboxylase that catalyses the first committed step in prokaryotic fatty acid biosynthesis. Recently, the andrimid (adm) biosynthetic gene cluster was isolated and heterologously expressed in Escherichia coli. This establishes a heterologous biological host in which to rapidly probe features of andrimid formation and to use biosynthetic engineering to make unnatural variants of this important and promising new class of antibiotics. Bioinformatic analysis of the adm cluster revealed a dissociated biosynthetic assembly system lacking canonical amide synthases between the first three carrier protein domains. Here we report that AdmF, a transglutaminase (TGase) homologue, catalyses the formation of the first amide bond, an N-acyl-beta-peptide link, in andrimid biosynthesis. Hence, AdmF is a newly discovered biosynthetic enzyme that acts as a stand-alone amide synthase between protein-bound, thiotemplated substrates in an antibiotic enzymatic assembly line. TGases (enzyme class (EC) 2.3.2.13) normally catalyse the cross-linking of (poly)peptides by creating isopeptidic bonds between the gamma-carboxamide group of a glutamine side chain of one protein and various amine donors, including lysine side chains. To the best of our knowledge, the present study constitutes the first report of a TGase-like enzyme recruited for the assembly of an antibiotic. Moreover, genome mining using the AdmF sequence yielded additional TGases in unassigned natural product biosynthetic pathways. With many more microbial genomes being sequenced, such a strategy could potentially unearth biosynthetic pathways producing new classes of antibiotics.  相似文献   
38.
Taga ME  Larsen NA  Howard-Jones AR  Walsh CT  Walker GC 《Nature》2007,446(7134):449-453
Vitamin B12 (cobalamin) is among the largest known non-polymeric natural products, and the only vitamin synthesized exclusively by microorganisms. The biosynthesis of the lower ligand of vitamin B(12), 5,6-dimethylbenzimidazole (DMB), is poorly understood. Recently, we discovered that a Sinorhizobium meliloti gene, bluB, is necessary for DMB biosynthesis. Here we show that BluB triggers the unprecedented fragmentation and contraction of the bound flavin mononucleotide cofactor and cleavage of the ribityl tail to form DMB and D-erythrose 4-phosphate. Our structural analysis shows that BluB resembles an NAD(P)H-flavin oxidoreductase, except that its unusually tight binding pocket accommodates flavin mononucleotide but not NAD(P)H. We characterize crystallographically an early intermediate along the reaction coordinate, revealing molecular oxygen poised over reduced flavin. Thus, BluB isolates and directs reduced flavin to activate molecular oxygen for its own cannibalization. This investigation of the biosynthesis of DMB provides clarification of an aspect of vitamin B12 that was otherwise incomplete, and may contribute to a better understanding of vitamin B12-related disease.  相似文献   
39.
Cell lineage and cell migration in the developing cerebral cortex   总被引:4,自引:0,他引:4  
Summary Modern techniques which trace lineages of individual progenitor cells have provided some clues about the processes that determine cell fate in the brain, and have also given us some information about migratory patterns of clonally related cells. In many parts of the central nervous system, progenitors are multipotent; single clones can contain multiple neuronal types or even mixtures of neurons and glia. In addition, one can observe a wide distribution in clone size, even when marking is done in a narrow time window. This suggests that progenitor cells may be fairly plastic and responsive to environmental signals. In the developing cortex, clonally related cells are initially grouped near each other, as in the retina and tectum. However, the subsequent migration of these cells from the ventricular zone to the cortex along glial fibers is accompanied by a progressive dispersion of clonally related neurons.  相似文献   
40.
Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final product where it is transported from one reaction centre to the next as a thioester linked to a 4'-phosphopantetheine (4'-PP) cofactor that is covalently attached to thiolation (T) domains. The second enzyme involved in the synthesis of these secondary metabolites, the type II thioesterase (TEII), is a crucial repair enzyme for the regeneration of functional 4'-PP cofactors of holo-T domains of NRPS and PKS systems. Mispriming of 4'-PP cofactors by acetyl- and short-chain acyl-residues interrupts the biosynthetic system. This repair reaction is very important, because roughly 80% of CoA, the precursor of the 4'-PP cofactor, is acetylated in bacteria. Here we report the three-dimensional structure of a type II thioesterase from Bacillus subtilis free and in complex with a T domain. Comparison with structures of TEI enzymes shows the basis for substrate selectivity and the different modes of interaction of TEII and TEI enzymes with T domains. Furthermore, we show that the TEII enzyme exists in several conformations of which only one is selected on interaction with its native substrate, a modified holo-T domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号