首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17807篇
  免费   57篇
  国内免费   88篇
系统科学   74篇
丛书文集   122篇
教育与普及   45篇
理论与方法论   41篇
现状及发展   7512篇
研究方法   882篇
综合类   9067篇
自然研究   209篇
  2013年   145篇
  2012年   281篇
  2011年   465篇
  2009年   117篇
  2008年   351篇
  2007年   392篇
  2006年   396篇
  2005年   388篇
  2004年   345篇
  2003年   358篇
  2002年   315篇
  2001年   691篇
  2000年   676篇
  1999年   417篇
  1994年   312篇
  1992年   386篇
  1991年   275篇
  1990年   333篇
  1989年   291篇
  1988年   255篇
  1987年   315篇
  1986年   316篇
  1985年   387篇
  1984年   280篇
  1983年   267篇
  1982年   250篇
  1981年   228篇
  1980年   217篇
  1979年   603篇
  1978年   438篇
  1977年   405篇
  1976年   356篇
  1975年   363篇
  1974年   434篇
  1973年   395篇
  1972年   356篇
  1971年   418篇
  1970年   575篇
  1969年   436篇
  1968年   448篇
  1967年   412篇
  1966年   384篇
  1965年   288篇
  1959年   147篇
  1958年   242篇
  1957年   155篇
  1956年   154篇
  1955年   139篇
  1954年   140篇
  1948年   124篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
982.
The isolation of human epidermal stem cells is critical for their clinical applications. In the present study, we isolated three populations of epidermal keratinocytes according to their ability to adhere to collagen type IV: i.e., rapidly adhering (RA), slowly adhering (SA), and non-adhering (NA) cells. The aim of this study was to characterize RA cells and to investigate the possibility of using these cells for epidermis reconstruction. To identify RA cells, flow cytometric analysis was performed using anti-6 integrin and anti-CD71 antibodies. RA cells express high levels of 6 integrin and low levels of CD71, which are considered as markers of an epidermal stem cell nature. Furthermore, electron microscopy showed that RA cells are small and have a high nuclear to cytoplasmic ratio, whereas SA and NA cells have well-developed cellular organelles and abundant tonofilaments. Western blot analysis showed that RA cells are slow cycling and express p63, a putative epidermal stem cell marker, whereas SA and NA cells express c-Myc, which is known to regulate stem cell fate. To compare epidermal regenerative abilities, skin equivalents (SEs) were made using RA, SA, and NA cells. The epidermis constructed from RA cells was well formed compared to those formed from SA or NA cells. In addition, only SEs with RA cells expressed 6 integrin and 1 integrin at the basal layer. These results indicate that RA cells represent epidermal stem cells and are predominately comprised of stem cells. Therefore, the isolation of RA cells using a simple technique offers a potential route to their clinical application, because they are easily isolated and provide a high yield of epidermal stem cells.Received 2 July 2004; received after revision 20 August 2004; accepted 10 September 2004  相似文献   
983.
An acylphosphatase (AcPase) overexpression study was carried out on SH-SY5Y neuroblastoma cells, using a green fluorescent fusion protein (AcP-GFP), with GFP acting as a reporter protein. The cellular proliferation rate was significantly reduced by overexpression of AcPase by a factor of ten. In contrast, clones transfected with two inactive AcPase mutants showed a growth rate comparable to control cells. This suggests that AcPase catalyzes the proliferative down-regulation. AcPase-overexpressing clones showed a physiological mortality rate as assessed by an MTT reduction test and by evaluation of necrotic markers. DNA fragmentation analysis and assays of caspase-3 and poly (ADP-ribose) polymerase (PARP)-active fragments showed no evidence of any apoptotic pattern. AcPase overexpression led to a marked increase in PARP activity as well as Bcl-2 content; these are commonly up-regulated during differentiative processes in neuronal cells. In fact, the typical differentiation marker, growth-associated-protein 43, was significantly up-regulated. Microscopic observations also showed a clear increase in the differentiative phenotype in AcPase-overexpressing cells. Our results clearly show that AcPase plays a primary causative role in neuronal differentiation.Received 3 May 2004; accepted 25 May 2004  相似文献   
984.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   
985.
The means by which oxygen intervenes in gene expression has been examined in considerable detail in the metabolically versatile bacterium Rhodobacter sphaeroides. Three regulatory systems are now known in this organism, which are used singly and in combination to modulate genes in response to changing oxygen availability. The outcome of these regulatory events is that the molecular machinery is present for the cell to obtain energy by means that are best suited to prevailing conditions, while at the same time maintaining cellular redox balance. Here, we explore the dangers associated with molecular oxygen relative to the various metabolisms used by R. sphaeroides, and then present the most recent findings regarding the features and operation of each of the three regulatory systems which collectively mediate oxygen control in this organism.Received 26 June 2003; received after revision 30 July 2003; accepted 8 August 2003  相似文献   
986.
The molecular mechanisms of congenital hypofibrinogenaemia   总被引:7,自引:0,他引:7  
Congenital hypofibrinogenaemia is characterized by abnormally low levels of fibrinogen and is usually caused by heterozygous mutations in the fibrinogen chain genes (, and ). However, it does not usually result in a clinically significant condition unless inherited in a homozygous or compound heterozygous state, where it results in a severe bleeding disorder, afibrinogenaemia. Various protein and expression studies have improved our understanding of how mutations causing hypo- and afibrinogenaemia affect secretion of the mature fibrinogen molecule from the hepatocyte. Some mutations can perturb chain assembly as in the 153 Cys Arg case, while others such as the B Leu Arg and the B414 Gly Ser mutations allow intracellular hexamer assembly but inhibit protein secretion. An interesting group of mutations, such as 284 Gly Arg and 375 Arg Trp, not only cause hypofibrinogenaemia but are also associated with liver disease. The nonexpression of these variant chains in plasma fibrinogen is due to retention in the endoplasmic reticulum, which in turn leads to hypofibrinogenaemia.Received 17 December 2003; received after revision 19 January 2004; accepted 21 January 2004  相似文献   
987.
988.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptotic cell death as well as expression of proinflammatory genes such as CXCL8 in malignant human astrocytoma cells. However, the molecular mechanisms that determine the fate of cells are not yet understood. The ubiquitin (Ub)-proteasome pathway regulates a wide range of cellular functions through degradation of various regulatory proteins; given this, we hypothesized that this pathway may play a central role in TRAIL-mediated signaling. We demonstrate here that inhibition of the Ub-proteasome pathway enhanced TRAIL-mediated cell death of human astrocytoma CRT-MG cells within hours by blocking degradation of active caspase-8 and -3. Proteasome inhibitors suppressed TRAIL-mediated activation of NF-B; however, inhibition of the NF-B pathway alone was not sufficient to enhance TRAIL-mediated cell death. Collectively, these results suggest that the Ub-proteasome pathway may play an important role as an antiapoptotic surveillance system by eliminating activated caspases as well as mediating NF-B-dependent signals.Received 30 December 2003; received after revision 9 February 2004; accepted 13 February 2004  相似文献   
989.
990.
Novel aspects of glypican glycobiology   总被引:5,自引:0,他引:5  
Mutations in glypican genes cause dysmorphic and overgrowth syndromes in men and mice, abnormal development in flies and worms, and defective gastrulation in zebrafish and ascidians. All glypican core proteins share a characteristic pattern of 14 conserved cysteine residues. Upstream from the C-terminal membrane anchorage are 3–4 heparan sulfate attachment sites. Cysteines in glypican-1 can become nitrosylated by nitric oxide in a copper-dependent reaction. When glypican-1 is exposed to ascorbate, nitric oxide is released and participates in deaminative cleavage of heparan sulfate at sites where the glucosamines have a free amino group. This process takes place while glypican-1 recycles via a nonclassical, caveolin-1-associated route. Glypicans are involved in growth factor signalling and transport, e.g. of polyamines. Cargo can be unloaded from heparan sulfate by nitric oxide-dependent degradation. How glypican and its degradation products and the cargo exit from the recycling route is an enigma.Received 27 November 2003; received after revision 8 January 2004; accepted 13 January 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号