首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12709篇
  免费   32篇
  国内免费   41篇
系统科学   77篇
丛书文集   32篇
教育与普及   64篇
理论与方法论   76篇
现状及发展   4893篇
研究方法   573篇
综合类   6776篇
自然研究   291篇
  2012年   197篇
  2011年   509篇
  2010年   86篇
  2009年   94篇
  2008年   216篇
  2007年   250篇
  2006年   249篇
  2005年   246篇
  2004年   322篇
  2003年   248篇
  2002年   247篇
  2001年   370篇
  2000年   379篇
  1999年   276篇
  1992年   237篇
  1991年   175篇
  1990年   183篇
  1989年   195篇
  1988年   195篇
  1987年   202篇
  1986年   184篇
  1985年   268篇
  1984年   191篇
  1983年   150篇
  1982年   121篇
  1981年   123篇
  1980年   153篇
  1979年   361篇
  1978年   274篇
  1977年   260篇
  1976年   246篇
  1975年   264篇
  1974年   325篇
  1973年   303篇
  1972年   254篇
  1971年   379篇
  1970年   504篇
  1969年   353篇
  1968年   343篇
  1967年   352篇
  1966年   381篇
  1965年   243篇
  1964年   113篇
  1959年   122篇
  1958年   233篇
  1957年   137篇
  1956年   142篇
  1955年   107篇
  1954年   92篇
  1948年   134篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
163.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   
164.
165.
Höner OP  Wachter B  East ML  Streich WJ  Wilhelm K  Burke T  Hofer H 《Nature》2007,448(7155):798-801
Dispersal has a significant impact on lifetime reproductive success, and is often more prevalent in one sex than the other. In group-living mammals, dispersal is normally male-biased and in theory this sexual bias could be a response by males to female mate preferences, competition for access to females or resources, or the result of males avoiding inbreeding. There is a lack of studies on social mammals that simultaneously assess these factors and measure the fitness consequences of male dispersal decisions. Here we show that male-biased dispersal in the spotted hyaena (Crocuta crocuta) most probably results from an adaptive response by males to simple female mate-choice rules that have evolved to avoid inbreeding. Microsatellite profiling revealed that females preferred sires that were born into or immigrated into the female's group after the female was born. Furthermore, young females preferred short-tenured sires and older females preferred longer-tenured sires. Males responded to these female mate preferences by initiating their reproductive careers in groups containing the highest number of young females. As a consequence, 11% of males started their reproductive career in their natal group and 89% of males dispersed. Males that started reproduction in groups containing the highest number of young females had a higher long-term reproductive success than males that did not. The female mate-choice rules ensured that females effectively avoided inbreeding without the need to discriminate directly against close kin or males born in their own group, or to favour immigrant males. The extent of male dispersal as a response to such female mate preferences depends on the demographic structure of breeding groups, rather than the genetic relatedness between females and males.  相似文献   
166.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   
167.
168.
Attribution of observed surface humidity changes to human influence   总被引:3,自引:0,他引:3  
Willett KM  Gillett NP  Jones PD  Thorne PW 《Nature》2007,449(7163):710-712
Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.  相似文献   
169.
Debaille V  Brandon AD  Yin QZ  Jacobsen B 《Nature》2007,450(7169):525-528
Resolving early silicate differentiation timescales is crucial for understanding the chemical evolution and thermal histories of terrestrial planets. Planetary-scale magma oceans are thought to have formed during early stages of differentiation, but the longevity of such magma oceans is poorly constrained. In Mars, the absence of vigorous convection and plate tectonics has limited the scale of compositional mixing within its interior, thus preserving the early stages of planetary differentiation. The SNC (Shergotty-Nakhla-Chassigny) meteorites from Mars retain 'memory' of these events. Here we apply the short-lived 146Sm-142Nd and the long-lived 147Sm-143Nd chronometers to a suite of shergottites to unravel the history of early silicate differentiation in Mars. Our data are best explained by progressive crystallization of a magma ocean with a duration of approximately 100 million years after core formation. This prolonged solidification requires the existence of a primitive thick atmosphere on Mars that reduces the cooling rate of the interior.  相似文献   
170.
The effect of quantum statistics in quantum gases and liquids results in observable collective properties among many-particle systems. One prime example is Bose-Einstein condensation, whose onset in a quantum liquid leads to phenomena such as superfluidity and superconductivity. A Bose-Einstein condensate is generally defined as a macroscopic occupation of a single-particle quantum state, a phenomenon technically referred to as off-diagonal long-range order due to non-vanishing off-diagonal components of the single-particle density matrix. The wavefunction of the condensate is an order parameter whose phase is essential in characterizing the coherence and superfluid phenomena. The long-range spatial coherence leads to the existence of phase-locked multiple condensates in an array of superfluid helium, superconducting Josephson junctions or atomic Bose-Einstein condensates. Under certain circumstances, a quantum phase difference of pi is predicted to develop among weakly coupled Josephson junctions. Such a meta-stable pi-state was discovered in a weak link of superfluid 3He, which is characterized by a 'p-wave' order parameter. The possible existence of such a pi-state in weakly coupled atomic Bose-Einstein condensates has also been proposed, but remains undiscovered. Here we report the observation of spontaneous build-up of in-phase ('zero-state') and antiphase ('pi-state') 'superfluid' states in a solid-state system; an array of exciton-polariton condensates connected by weak periodic potential barriers within a semiconductor microcavity. These in-phase and antiphase states reflect the band structure of the one-dimensional polariton array and the dynamic characteristics of metastable exciton-polariton condensates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号