首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15679篇
  免费   63篇
  国内免费   97篇
系统科学   102篇
丛书文集   120篇
教育与普及   95篇
理论与方法论   82篇
现状及发展   6210篇
研究方法   678篇
综合类   8271篇
自然研究   281篇
  2013年   112篇
  2012年   244篇
  2011年   574篇
  2010年   118篇
  2009年   171篇
  2008年   269篇
  2007年   323篇
  2006年   305篇
  2005年   342篇
  2004年   388篇
  2003年   312篇
  2002年   306篇
  2001年   498篇
  2000年   490篇
  1999年   351篇
  1992年   302篇
  1991年   237篇
  1990年   259篇
  1989年   244篇
  1988年   253篇
  1987年   264篇
  1986年   228篇
  1985年   338篇
  1984年   251篇
  1983年   199篇
  1982年   174篇
  1981年   170篇
  1980年   213篇
  1979年   467篇
  1978年   384篇
  1977年   339篇
  1976年   303篇
  1975年   309篇
  1974年   400篇
  1973年   377篇
  1972年   324篇
  1971年   443篇
  1970年   567篇
  1969年   423篇
  1968年   398篇
  1967年   400篇
  1966年   426篇
  1965年   277篇
  1964年   104篇
  1959年   132篇
  1958年   250篇
  1957年   146篇
  1956年   155篇
  1955年   118篇
  1948年   135篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
291.
292.
Chan TL  Yuen ST  Kong CK  Chan YW  Chan AS  Ng WF  Tsui WY  Lo MW  Tam WY  Li VS  Leung SY 《Nature genetics》2006,38(10):1178-1183
Epimutations in the germline, such as methylation of the MLH1 gene, may contribute to hereditary cancer syndrome in human, but their transmission to offspring has never been documented. Here we report a family with inheritance, in three successive generations, of germline allele-specific and mosaic hypermethylation of the MSH2 gene, without evidence of DNA mismatch repair gene mutation. Three siblings carrying the germline methylation developed early-onset colorectal or endometrial cancers, all with microsatellite instability and MSH2 protein loss. Clonal bisulfite sequencing and pyrosequencing showed different methylation levels in different somatic tissues, with the highest level recorded in rectal mucosa and colon cancer tissue, and the lowest in blood leukocytes. This mosaic state of germline methylation with different tissue distribution could act as the first hit and provide a mechanism for genetic disease inheritance that may deviate from the mendelian pattern and be overlooked in conventional leukocyte-based genetic diagnosis strategy.  相似文献   
293.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral dysfunction and is the leading cause of dementia in the elderly. Several studies have implicated molecular and cellular signaling cascades involving the serine-threonine kinase, glycogen synthase kinase β(GSK-3β) in the pathogenesis of AD. GSK-3β may play an important role in the formation of neurofibrillary tangles and senile plaques, the two classical pathological hallmarks of AD. In this review, we discuss the interaction between GSK-3β and several key molecules involved in AD, including the presenilins, amyloid precursor protein, tau, and β-amyloid. We identify the signal transduction pathways involved in the pathogenesis of AD, including Wnt, Notch, and the PI3 kinase/Akt pathway. These may be potential therapeutic targets in AD. Received 19 December 2005; received after revision 24 January 2006; accepted 6 February 2006  相似文献   
294.
A hallmark of resistance to type I interferons (IFNs) is the lack of antiproliferative responses. We show here that costimulation with IFN-alpha and transforming growth factor beta-1 (TGF-beta) potentiates antiproliferative activity in a sensitive (ME15) and resistant (D10) human melanoma cell line. A DNA microarray-based search for proliferation control genes involved that are cooperatively activated by IFN-alpha and TGF-beta, yielded 28 genes. Among these are the insulin-like growth factor-binding protein 3 (IGFBP3) and the calcium-binding protein S100A2; we demonstrate, that recombinant IGFBP3 protein is a potent growth inhibitor requiring TGF-beta activity. The antiproliferative activity of S100A2 is significantly enhanced by IFN-alpha in stably transfected ME15 or D10 cell lines. We show for the first time that IFN-alpha is a potent inducer of intracellular calcium release required for activation of S100A2. Our study provides a functional link between IFN-alpha and TGF-beta signaling and extends the function of IFN signaling to calcium-sensitive processes.  相似文献   
295.
Using a novel single-molecule PCR approach to quantify the total burden of mitochondrial DNA (mtDNA) molecules with deletions, we show that a high proportion of individual pigmented neurons in the aged human substantia nigra contain very high levels of mtDNA deletions. Molecules with deletions are largely clonal within each neuron; that is, they originate from a single deleted mtDNA molecule that has expanded clonally. The fraction of mtDNA deletions is significantly higher in cytochrome c oxidase (COX)-deficient neurons than in COX-positive neurons, suggesting that mtDNA deletions may be directly responsible for impaired cellular respiration.  相似文献   
296.
Anthrax has been a major cause of death in grazing animals and an occasional cause of death in humans for thousands of years. Since the late 1800s there has been an exceptional international history of anthrax vaccine development. Due to animal vaccinations, the rate of infection has dropped dramatically. Anthrax vaccines have progressed from uncharacterized whole-cell vaccines in 1881, to pXO2-negative spores in the 1930s, to culture filtrates absorbed to aluminum hydroxide in 1970, and likely to recombinant protective antigen in the near future. Each of these refinements has increased safety without significant loss of efficacy. The threat of genetically engineered, antibiotic and vaccine resistant strains of Bacillus anthracis is fueling hypothesis-driven research and global techniques--including genomics, proteomics and transposon site hybridization--to facilitate the discovery of novel vaccine targets. This review highlights historical achievements and new developments in anthrax vaccine research.  相似文献   
297.
298.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:2,自引:0,他引:2  
The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods.  相似文献   
299.
The urokinase receptor and integrins in cancer progression   总被引:2,自引:0,他引:2  
Enhanced levels of expression of urokinase receptor (uPAR) and certain integrins have been linked to cancer cell progression. This has classically been attributed to matrix degradation via the activation of the urokinase (uPA)/plasmin system and modulation of cell motility and survival through integrin engagement. More recently, uPAR has been shown to play multiple roles independent of protease activity. Specifically, uPAR has been shown to be intimately involved in the regulation of cell adhesion, migration and proliferation in part through interactions with other membrane partners, including integrins. The goal of this review is to summarize recent insights in the function of uPAR/integrin interactions, to provide a framework for understanding the importance of these interactions in the context of cancer, and to highlight its potential as a target for therapeutic intervention.  相似文献   
300.
The utility F-box for protein destruction   总被引:3,自引:1,他引:2  
A signature feature of all living organisms is their utilization of proteins to construct molecular machineries that undertake the complex network of cellular activities. The abundance of a protein element is temporally and spatially regulated in two opposing aspects: de novo synthesis to manufacture the required amount of the protein, and destruction of the protein when it is in excess or no longer needed. One major route of protein destruction is coordinated by a set of conserved molecules, the F-box proteins, which promote ubiquitination in the ubiquitin-proteasome pathway. Here we discuss the functions of F-box proteins in several cellular scenarios including cell cycle progression, synapse formation, plant hormone responses, and the circadian clock. We particularly emphasize the mechanisms whereby F-box proteins recruit specific substrates and regulate their abundance in the context of SCF E3 ligases. For some exceptions, we also review how F-box proteins function through non-SCF mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号