首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38666篇
  免费   72篇
  国内免费   91篇
系统科学   219篇
丛书文集   736篇
教育与普及   104篇
理论与方法论   255篇
现状及发展   16615篇
研究方法   1527篇
综合类   18753篇
自然研究   620篇
  2013年   246篇
  2012年   506篇
  2011年   1196篇
  2010年   225篇
  2008年   644篇
  2007年   661篇
  2006年   713篇
  2005年   731篇
  2004年   716篇
  2003年   708篇
  2002年   697篇
  2001年   1112篇
  2000年   1063篇
  1999年   711篇
  1992年   681篇
  1991年   560篇
  1990年   581篇
  1989年   583篇
  1988年   579篇
  1987年   606篇
  1986年   581篇
  1985年   755篇
  1984年   590篇
  1983年   489篇
  1982年   416篇
  1981年   409篇
  1980年   530篇
  1979年   1173篇
  1978年   1008篇
  1977年   990篇
  1976年   719篇
  1975年   793篇
  1974年   1137篇
  1973年   973篇
  1972年   985篇
  1971年   1241篇
  1970年   1644篇
  1969年   1223篇
  1968年   1164篇
  1967年   1222篇
  1966年   1077篇
  1965年   771篇
  1964年   230篇
  1959年   440篇
  1958年   676篇
  1957年   531篇
  1956年   474篇
  1955年   390篇
  1954年   427篇
  1948年   290篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
911.
T Tuomikoski  M A Felix  M Dorée  J Gruenberg 《Nature》1989,342(6252):942-945
Membrane transport between the endoplasmic reticulum and the plasma membrane, which involves the budding and fusion of carrier vesicles, is inhibited during mitosis in animal cells. At the same time, the Golgi complex and the nuclear envelope, as well as the endoplasmic reticulum in some cell types, become fragmented. Fragmentation of the Golgi is believed to facilitate its equal partitioning between daughter cells. In fact, it has been postulated that both the inhibition of membrane traffic and Golgi fragmentation during mitosis are due to an inhibition of vesicle fusion, while vesicle budding continues. Although less is known about the endocytic pathway, internalization and receptor recycling are also arrested during mitosis. We have now used a cell-free assay to show that the fusion of endocytic vesicles from baby hamster kidney cells is reduced in Xenopus mitotic cytosol when compared with interphase cytosol. We reconstituted this inhibition in interphase cytosol by adding a preparation enriched in the starfish homologue of the cdc2 protein kinase. Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic.  相似文献   
912.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   
913.
M B Ganz  G Boyarsky  R B Sterzel  W F Boron 《Nature》1989,337(6208):648-651
Growth factors raise intracellular pH (pHi) by stimulating Na+/H+ exchange in the absence of HCO3-. In mutant cells that lack the Na+/H+ exchange activity, this alkalinization does not occur, and the cells do not proliferate without artificial elevation of pHi. It has therefore been widely suggested that an early pHi increase is a necessary signal for mitogenesis. In the presence of HCO3- however, growth factors fail to raise pHi in A431 cells, renal mesangial cells and 3T3 fibroblasts. In mesangial cells, arginine vasopressin (AVP) raises pHi in the absence of HCO3-, but lowers it when HCO3- is present; growth is stimulated under both conditions. We report here that, in the presence of HCO3-, AVP stimulates two potent HCO3- transporters, as well as the Na+/H+ exchanger. These are the Na+-dependent and Na+-independent Cl-/HCO3- exchangers. Our results indicate that AVP causes acidification in the presence of HCO3- because, at the resting pHi, it stimulates Na+-independent Cl-/HCO3- exchange (which lowers pHi) more than it stimulates the sum of Na+/H+ exchange and Na+-dependent Cl-/HCO3- exchange (both of which raise pHi). The stimulation of three acid-base transporters by the growth factor AVP greatly enhances the ability of the cell to regulate pHi.  相似文献   
914.
J Bill  E Palmer 《Nature》1989,341(6243):649-651
T lymphocytes differentiate in the thymus, where functionally immature, CD4+CD8+ (double positive) thymocytes develop into functionally mature CD4+ helper cells and CD8+ cytotoxic (single positive) T cells. The thymus is the site where self-reactive T cells are negatively selected (clonally deleted) and where T cells with the capacity to recognize foreign antigens in association with self-proteins encoded by the major histocompatibility complex (MHC) are positively selected. The net result of these developmental pathways is a T-cell repertoire that is both self-tolerant and self-restricted. One unresolved issue is the identity of the thymic stromal cells that mediate the negative and positive selection of the T-cell repertoire. Previous work has pointed to a bone-marrow-derived macrophage or dendritic cell as the inducer of tolerance, whereas a radiation-resistant, deoxyguanosine-resistant thymic cell seems to mediate the positive selection of self-MHC restricted T cells. Thymic stromal cells in the cortex interact with the T-cell antigen receptor on thymocytes. Using several strains of transgenic mice that express the class II MHC molecule I-E in specific regions of the thymus, we show directly that the positive selection of T cells is mediated by an I-E-bearing cell in the thymic cortex.  相似文献   
915.
A Nicolas  D Treco  N P Schultes  J W Szostak 《Nature》1989,338(6210):35-39
An initiation site for meiotic gene conversion has been identified in the promoter region of the ARG4 gene of Saccharomyces cerevisiae. The chromosome on which initiation occurs is the recipient of genetic information during gene conversion.  相似文献   
916.
917.
The primary event in the pathogenesis of severe malaria in Plasmodium falciparum infection is thought to be adherence of trophozoite- and schizont-infected erythrocytes to capillary endothelium, a process called sequestration. Identifying the endothelial molecules used as receptors is an essential step in understanding this disease process. Recent work implicates the membrane glycoprotein CD36 (platelet glycoprotein IV; refs 2-5) and the multi-functional glycoprotein thrombospondin as receptors. Although CD36 has a widespread distribution on microvascular endothelium, it may not be expressed on all capillary beds where sequestration occurs, especially in the brain. The role of thrombospondin in cell adhesion, in vitro or in vivo, is less certain. We have noticed that some parasites bind to human umbilical-vein endothelial cells independently of CD36 or thrombospondin. To screen for alternative receptors, we have developed a novel cell-adhesion assay using transfected COS cells, which confirms that CD36 is a cell-adhesion receptor. In addition, we find that an endothelial-binding line of P. falciparum binds to COS cells transfected with a complementary DNA encoding intercellular adhesion molecule-1. As this molecule is widely distributed on capillaries and is inducible, this finding may be relevant to the pathogenesis of severe malaria.  相似文献   
918.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   
919.
The CD4 T-cell surface antigen is an integral membrane glycoprotein of relative molecular mass 55,000 which binds class II major histocompatibility complex (MHC) molecules expressed on antigen presenting cells (APCs). It is thought to stabilize physical interactions between T cells and APCs (for a review, see ref. 1). Evidence is accumulating that suggests that CD4 can transduce an independent signal during T-cell activation. It has recently been shown that CD4 expressed on human and murine T cells is physically associated with the Src-related tyrosine protein kinase p56lck (refs 7, 8). These results indicate that CD4 can function as a signal transducer and suggest that tyrosine phosphorylation events may be important in CD4-mediated signalling. Here, we present evidence that cross-linking of the CD4 receptor induces a rapid increase in the tyrosine-specific protein kinase activity of p56lck and is associated with the rapid phosphorylation of one of the subunits (zeta) of the T-cell receptor complex on tyrosine residues. These data provide direct evidence for a specific CD4 signal transduction pathway that is mediated through p56lck and suggest that some of the tyrosine phosphorylation events detected during antigen-mediated T-cell activation may result from signalling through this surface molecule.  相似文献   
920.
Oligodendrocytes synthesize myelin in the central nervous system and maintain it in lamellar sheaths around axons. Techniques for studying oligodendrocyte development in vitro can be used, indirectly, to investigate the myelin injury that occurs in human and experimental demyelinating disease. Cell-mediated immune mechanisms are necessary but not sufficient to induce myelin damage in vivo; more recently complement has also been implicated in the pathogenesis both of multiple sclerosis and experimental allergic encephalomyelitis. Previously we have demonstrated that antibody-independent complement activation occurs in vitro at the oligodendrocyte surface. Here we show that the ensuing oligodendrocyte injury is reversible, and that recovery involves the release of membrane-attack complex-enriched vesicles from the surface of viable cells. The demonstration of morphologically and immunochemically identical vesicles in the cerebrospinal fluid of patients with multiple sclerosis suggests that reversible complement-mediated injury contributes to myelin damage in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号