首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32321篇
  免费   92篇
  国内免费   180篇
系统科学   171篇
丛书文集   540篇
教育与普及   45篇
理论与方法论   116篇
现状及发展   15310篇
研究方法   1375篇
综合类   14586篇
自然研究   450篇
  2013年   284篇
  2012年   450篇
  2011年   896篇
  2010年   189篇
  2008年   582篇
  2007年   643篇
  2006年   641篇
  2005年   591篇
  2004年   602篇
  2003年   546篇
  2002年   576篇
  2001年   1000篇
  2000年   960篇
  1999年   654篇
  1992年   644篇
  1991年   457篇
  1990年   528篇
  1989年   521篇
  1988年   486篇
  1987年   589篇
  1986年   514篇
  1985年   672篇
  1984年   532篇
  1983年   419篇
  1982年   386篇
  1981年   404篇
  1980年   505篇
  1979年   973篇
  1978年   849篇
  1977年   830篇
  1976年   690篇
  1975年   723篇
  1974年   952篇
  1973年   834篇
  1972年   858篇
  1971年   953篇
  1970年   1252篇
  1969年   917篇
  1968年   919篇
  1967年   905篇
  1966年   774篇
  1965年   529篇
  1964年   197篇
  1959年   302篇
  1958年   505篇
  1957年   352篇
  1956年   300篇
  1955年   285篇
  1954年   282篇
  1948年   194篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
991.
T Langer  C Lu  H Echols  J Flanagan  M K Hayer  F U Hartl 《Nature》1992,356(6371):683-689
The main stress proteins of Escherichia coli function in an ordered protein-folding reaction. DnaK (heat-shock protein 70) recognizes the folding polypeptide as an extended chain and cooperates with DnaJ in stabilizing an intermediate conformational state lacking ordered tertiary structure. Dependent on GrpE and ATP hydrolysis, the protein is then transferred to GroEL (heat-shock protein 60) which acts catalytically in the production of the native state. This sequential mechanism of chaperone action may represent an important pathway for the folding of newly synthesized polypeptides.  相似文献   
992.
Human aminopeptidase N is a receptor for human coronavirus 229E.   总被引:62,自引:0,他引:62  
Human coronaviruses (HCV) in two serogroups represented by HCV-229E and HCV-OC43 are an important cause of upper respiratory tract infections. Here we report that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strain HCV-229E, but not for HCV-OC43. A monoclonal antibody, RBS, blocked HCV-229E virus infection of human lung fibroblasts, immunoprecipitated aminopeptidase N and inhibited its enzymatic activity. HCV-229E-resistant murine fibroblasts became susceptible after transfection with complementary DNA encoding human aminopeptidase N. By contrast, infection of human cells with HCV-OC43 was not inhibited by antibody RBS and expression of aminopeptidase N did not enhance HCV-OC43 replication in mouse cells. A mutant aminopeptidase lacking the catalytic site of the enzyme did not bind HCV-229E or RBS and did not render murine cells susceptible to HCV-229E infection, suggesting that the virus-binding site may lie at or near the active site of the human aminopeptidase molecule.  相似文献   
993.
It has been suggested that Hox genes play an important part in the patterning of limbs, vertebrae and craniofacial structures by providing an ordered molecular system of positional values, termed the Hox code. Little is known about the nature of the signals that govern the establishment and regulation of Hox genes, but retinoic acid can affect the expression of these genes in cell lines and in embryonic tissues. On the basis of experimental and clinical evidence, the hindbrain and branchial region of the head are particularly sensitive to the effects of retinoic acid but the phenotypes are complex and hard to interpret, and how and if they relate to Hox expression has not been clear. Here we follow the changes induced by retinoic acid to hindbrain segmentation and the branchial arches using transgenic mice which contain lacZ reporter genes that reveal the endogenous segment-restricted expression of the Hox-B1 (Hox-2.9), Hox-B2(Hox-2.8) and Krox-20 genes. Our results show that these genes rapidly respond to exposure to retinoic acid at preheadfold stages and undergo a progressive series of changes in segmental expression that are associated with specific phenotypes in hindbrain of first branchial arch. Together the molecular and anatomical alterations indicate that retinoic acid has induced changes in the hindbrain Hox code which result in the homeotic transformation of rhombomeres (r) 2/3 to an r4/5 identity. A main feature of this rhombomeric phenotype is that the trigeminal motor nerve is transformed to a facial identity. Furthermore, in support of this change in rhombomeric identity, neural crest cells derived from r2/3 also express posterior Hox markers suggesting that the retinoic acid-induced transformation extends to multiple components of the first branchial arch.  相似文献   
994.
Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease.  相似文献   
995.
996.
Elongation factor-1 alpha gene determines susceptibility to transformation.   总被引:14,自引:0,他引:14  
M Tatsuka  H Mitsui  M Wada  A Nagata  H Nojima  H Okayama 《Nature》1992,359(6393):333-336
Elongation factor-1 alpha (EF-1 alpha), an essential component of the eukaryotic translational apparatus, is a GTP-binding protein that catalyses the binding of aminoacyl-transfer RNAs to the ribosome. Expression of the EF-1 alpha gene decreases towards the end of the lifespans of mouse and human fibroblasts, but forced expression of EF-1 alpha prolongs the lifespan of Drosophila melanogaster. Eukaryotic initiation factor-4E, another component of the translational machinery, is mitogenic or oncogenic when constitutively expressed in some mammalian cells. Thus, components of the protein synthesis apparatus seem to be involved in the control of cell proliferation. Using expression cloning, we have isolated a complementary DNA clone from a BALB/c 3T3 mouse fibroblast variant, A31-I-13 (ref. 10), which specifies a factor determining the susceptibility of BALB/c3T3 to chemically and physically induced transformation. Here we report that the factor is EF-1 alpha and that its constitutive expression causes BALB/c 3T3 A31-I-1 (ref. 10), C3H10T1/2 (ref. 11) and Syrian hamster SHOK fibroblasts to become highly susceptible to transformation induced by 3-methylcholanthrene and ultraviolet light. EF-1 alpha messenger RNA is also constitutively expressed in a quiescent culture of the highly susceptible variant A31-I-13. We conclude that the removal of regulation of the expression of these components of the translational machinery may predispose cells to become more susceptible to malignant transformation.  相似文献   
997.
Effects of an Rb mutation in the mouse.   总被引:126,自引:0,他引:126  
The retinoblastoma gene is mutated in several types of human cancer and is the best characterized of the tumour-suppressor genes. A mouse strain has been constructed in which one allele of Rb is disrupted. These heterozygous animals are not predisposed to retinoblastoma, but some display pituitary tumours arising from cells in which the wild-type Rb allele is absent. Embryos homozygous for the mutation die between days 14 and 15 of gestation, exhibiting neuronal cell death and defective erythropoiesis.  相似文献   
998.
999.
1000.
Progressive cerebral deposition of the 39-43-amino-acid amyloid beta-protein (A beta) is an invariant feature of Alzheimer's disease which precedes symptoms of dementia by years or decades. The only specific molecular defects that cause Alzheimer's disease which have been identified so far are missense mutations in the gene encoding the beta-amyloid precursor protein (beta-APP) in certain families with an autosomal dominant form of the disease (familial Alzheimer's disease, or FAD). These mutations are located within or immediately flanking the A beta region of beta-APP, but the mechanism by which they cause the pathological phenotype of early and accelerated A beta deposition is unknown. Here we report that cultured cells which express a beta-APP complementary DNA bearing a double mutation (Lys to Asn at residue 595 plus Met to Leu at position 596) found in a Swedish FAD family produce approximately 6-8-fold more A beta than cells expressing normal beta-APP. The Met 596 to Leu mutation is principally responsible for the increase. These data establish a direct link between a FAD genotype and the clinicopathological phenotype. Further, they confirm the relevance of the continuous A beta production by cultured cells for elucidating the fundamental mechanism of Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号