首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19720篇
  免费   42篇
  国内免费   76篇
系统科学   93篇
丛书文集   238篇
教育与普及   36篇
理论与方法论   94篇
现状及发展   8525篇
研究方法   936篇
综合类   9545篇
自然研究   371篇
  2013年   127篇
  2012年   320篇
  2011年   682篇
  2010年   129篇
  2008年   400篇
  2007年   412篇
  2006年   411篇
  2005年   410篇
  2004年   398篇
  2003年   355篇
  2002年   356篇
  2001年   563篇
  2000年   572篇
  1999年   382篇
  1992年   345篇
  1991年   258篇
  1990年   289篇
  1989年   271篇
  1988年   269篇
  1987年   281篇
  1986年   264篇
  1985年   411篇
  1984年   293篇
  1983年   219篇
  1982年   212篇
  1981年   210篇
  1980年   242篇
  1979年   542篇
  1978年   421篇
  1977年   423篇
  1976年   394篇
  1975年   427篇
  1974年   508篇
  1973年   466篇
  1972年   468篇
  1971年   579篇
  1970年   758篇
  1969年   599篇
  1968年   584篇
  1967年   584篇
  1966年   496篇
  1965年   367篇
  1964年   134篇
  1959年   232篇
  1958年   374篇
  1957年   275篇
  1956年   233篇
  1955年   194篇
  1954年   234篇
  1948年   175篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
381.
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.  相似文献   
382.
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.  相似文献   
383.
Little is known about the fate of machinery proteins of the protein quality control and endoplasmic reticulum(ER)-associated degradation (ERAD). We investigated the degradation of the ERAD component EDEM1, which directs overexpressed misfolded glycoproteins to degradation. Endogenous EDEM1 was studied since EDEM1 overexpression not only resulted in inappropriate occurrence throughout the ER but also caused cytotoxic effects. Proteasome inhibitors had no effect on the clearance of endogenous EDEM1 in non-starved cells. However, EDEM1 could be detected by immunocytochemistry in autophagosomes and biochemically in LC3 immuno-purified autophagosomes. Furthermore, influencing the lysosome-autophagy pathway by vinblastine or pepstatin A/E64d and inhibiting autophagosome formation by 3-methyladenine or ATGs short interfering RNA knockdown stabilized EDEM1. Autophagic degradation involved removal of cytosolic Triton X-100-insoluble deglycosylated EDEM1, but not of EDEM1-containing ER cisternae. Our studies demonstrate that endogenous EDEM1 in cells not stressed by the expression of a transgenic misfolded protein reaches the cytosol and is degraded by basal autophagy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 15 January 2009; received after revision 16 February 2009; accepted 17 February 2009 V. Le Fourn, K. Gaplovska-Kysela: These authors equally contributed to this work.  相似文献   
384.
385.
The enoyl-acyl carrier protein reductase (ENR) is the last enzyme in the fatty acid elongation cycle. Unlike most enzymes in this essential pathway, ENR displays an unusual diversity among organisms. The growing interest in ENRs is mainly due to the fact that a variety of both synthetic and natural antibacterial compounds are shown to specifically target their activity. The primary anti-tuberculosis drug, isoniazid, and the broadly used antibacterial compound, triclosan, both target this enzyme. In this review, we discuss the diversity of ENRs, and their inhibitors in the light of current research progress. Received 3 November 2008; received after revision 5 December 2008; accepted 8 December 2008  相似文献   
386.
Digoxin and ouabain are steroid drugs that inhibit the Na+/K+-ATPase, and are widely used in the treatment of heart diseases. They may also have additional effects, such as on metabolism of steroid hormones, although until now no evidence has been provided about the effects of these cardioactive glycosides on the synthesis of cholesterol. Here we report that digoxin and ouabain increased the synthesis of cholesterol in human liver HepG2 cells, enhancing the activity and the expression of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the rate-limiting enzyme of the cholesterol synthesis. This effect was mediated by the binding of the sterol regulatory element binding protein-2 (SREBP-2) to the HMGCR promoter, and was lost in cells silenced for SREBP-2 or loaded with increasing amounts of cholesterol. Digoxin and ouabain competed with cholesterol for binding to the SREBP-cleavage-activating protein, and are critical regulators of cholesterol synthesis in human liver cells. Received 10 January 2009; received after revision 11 February 2009; accepted 6 March 2009  相似文献   
387.
The unique and evolutionary highly conserved major vault protein (MVP) is the main component of ubiquitous, large cellular ribonucleoparticles termed vaults. The 100 kDa MVP represents more than 70% of the vault mass which contains two additional proteins, the vault poly (ADP-ribose) polymerase (vPARP) and the telomerase-associated protein 1 (TEP1), as well as several short untranslated RNAs (vRNA). Vaults are almost ubiquitously expressed and, besides chemotherapy resistance, have been implicated in the regulation of several cellular processes including transport mechanisms, signal transmissions and immune responses. Despite a growing amount of data from diverse species and systems, the definition of precise vault functions is still highly complex and challenging. Here we review the current knowledge on MVP and vaults with focus on regulatory functions in intracellular signal transduction and immune defence. Received 27 June 2008; received after revision 25 July 2008; accepted 30 July 2008  相似文献   
388.
The exposure of phosphatidylserine (PS) at the cell surface plays a critical role in blood coagulation and serves as a macrophage recognition moiety for the engulfment of apoptotic cells. Previous observations have shown that a high extracellular [K+] and selective K+ channel blockers inhibit PS exposure in platelets and erythrocytes. Here we show that the rate of PS exposure in erythrocytes decreases by ~50% when the intracellular [K+] increases from 0 to physiological concentrations. Using resealed erythrocyte membranes, we further show that lipid scrambling is inducible by raising the intracellular [Ca2+] and that K+ ions have a direct inhibitory effect on this process. Lipid scrambling in resealed ghosts occurs in the absence of cell shrinkage and microvesicle formation, processes that are generally attributed to Ca2+-induced lipid scrambling in intact erythrocytes. Thus, opening of Ca2+-sensitive K+ channels causes loss of intracellular K+ that results in reduced intrinsic inhibitory effect of these ions on scramblase activity. Received 11 September 2008; received after revision 17 October 2008; accepted 27 October 2008  相似文献   
389.
This paper provides clear‐cut evidence that the out‐of‐sample VaR (value‐at‐risk) forecasting performance of alternative parametric volatility models, like EGARCH (exponential general autoregressive conditional heteroskedasticity) or GARCH, and Markov regime‐switching models, can be considerably improved if they are combined with skewed distributions of asset return innovations. The performance of these models is found to be similar to that of the EVT (extreme value theory) approach. The performance of the latter approach can also be improved if asset return innovations are assumed to be skewed distributed. The performance of the Markov regime‐switching model is considerably improved if this model allows for EGARCH effects, for all different volatility regimes considered. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
390.
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号