首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17287篇
  免费   25篇
  国内免费   67篇
系统科学   123篇
丛书文集   288篇
教育与普及   43篇
理论与方法论   63篇
现状及发展   7398篇
研究方法   908篇
综合类   8293篇
自然研究   263篇
  2013年   112篇
  2012年   298篇
  2011年   566篇
  2010年   104篇
  2009年   99篇
  2008年   316篇
  2007年   360篇
  2006年   376篇
  2005年   376篇
  2004年   377篇
  2003年   323篇
  2002年   320篇
  2001年   609篇
  2000年   571篇
  1999年   388篇
  1992年   325篇
  1991年   264篇
  1990年   279篇
  1989年   253篇
  1988年   235篇
  1987年   280篇
  1986年   291篇
  1985年   319篇
  1984年   280篇
  1983年   222篇
  1982年   182篇
  1981年   195篇
  1980年   249篇
  1979年   566篇
  1978年   432篇
  1977年   425篇
  1976年   314篇
  1975年   349篇
  1974年   515篇
  1973年   437篇
  1972年   428篇
  1971年   519篇
  1970年   688篇
  1969年   484篇
  1968年   399篇
  1967年   487篇
  1966年   398篇
  1965年   282篇
  1959年   162篇
  1958年   268篇
  1957年   207篇
  1956年   180篇
  1955年   144篇
  1954年   150篇
  1948年   126篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
321.
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.  相似文献   
322.
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin–proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.  相似文献   
323.
Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin–proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin–proteasome and the autophagy–lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.  相似文献   
324.
Nanoparticles (NPs) comprised of nanoengineered complexes are providing new opportunities for enabling targeted delivery of a range of therapeutics and combinations. A range of functionalities can be included within a nanoparticle complex, including surface chemistry that allows attachment of cell-specific ligands for targeted delivery, surface coatings to increase circulation times for enhanced bioavailability, specific materials on the surface or in the nanoparticle core that enable storage of a therapeutic cargo until the target site is reached, and materials sensitive to local or remote actuation cues that allow controlled delivery of therapeutics to the target cells. However, despite the potential benefits of NPs as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of NP materials, as well as their size and shape. The need to validate each NP for safety and efficacy with each therapeutic compound or combination of therapeutics is an enormous challenge, which forces industry to focus mainly on those nanoparticle materials where data on safety and efficacy already exists, i.e., predominantly polymer NPs. However, the enhanced functionality affordable by inclusion of metallic materials as part of nanoengineered particles provides a wealth of new opportunity for innovation and new, more effective, and safer therapeutics for applications such as cancer and cardiovascular diseases, which require selective targeting of the therapeutic to maximize effectiveness while avoiding adverse effects on non-target tissues.  相似文献   
325.
In this paper I identify a tension between the two sets of works by Kuhn regarding the genesis of the "new historiography of science". In the first, it could be said that the change from the traditional to the new historiography is strictly endogenous (referring to internal causes or reasons). In the second, the change is predominantly exogenous. To address this question, I draw on a text that is considered to be less important among Kuhn's works, but which, as shall be argued, allows some contact between Kuhn's two approaches via Koyré. I seek to point out and differentiate the roles of Koyré and Kuhn--from Kuhn's point of view--in the development of the historiography of science and, as a complement, present some reflections regarding the justification of the new historiography.  相似文献   
326.
327.
328.
This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.  相似文献   
329.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   
330.
Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号