首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   0篇
现状及发展   14篇
研究方法   40篇
综合类   100篇
自然研究   10篇
  2015年   1篇
  2014年   1篇
  2012年   14篇
  2011年   27篇
  2010年   4篇
  2008年   13篇
  2007年   17篇
  2006年   13篇
  2005年   18篇
  2004年   6篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1966年   2篇
  1965年   3篇
  1962年   1篇
  1946年   1篇
排序方式: 共有164条查询结果,搜索用时 0 毫秒
131.
The incidence of melanoma is increasing more than any other cancer, and knowledge of its genetic alterations is limited. To systematically analyze such alterations, we performed whole-exome sequencing of 14 matched normal and metastatic tumor DNAs. Using stringent criteria, we identified 68 genes that appeared to be somatically mutated at elevated frequency, many of which are not known to be genetically altered in tumors. Most importantly, we discovered that TRRAP harbored a recurrent mutation that clustered in one position (p. Ser722Phe) in 6 out of 167 affected individuals (~4%), as well as a previously unidentified gene, GRIN2A, which was mutated in 33% of melanoma samples. The nature, pattern and functional evaluation of the TRRAP recurrent mutation suggest that TRRAP functions as an oncogene. Our study provides, to our knowledge, the most comprehensive map of genetic alterations in melanoma to date and suggests that the glutamate signaling pathway is involved in this disease.  相似文献   
132.
Adolescent idiopathic scoliosis is a pediatric spinal deformity affecting 2-3% of school-age children worldwide(1). Genetic factors have been implicated in its etiology(2). Through a genome-wide association study (GWAS) and replication study involving a total of 1,376 Japanese females with adolescent idiopathic scoliosis and 11,297 female controls, we identified a locus at chromosome 10q24.31 associated with adolescent idiopathic scoliosis susceptibility. The most significant SNP (rs11190870; combined P = 1.24 × 10(-19); odds ratio (OR) = 1.56) is located near LBX1 (encoding ladybird homeobox 1). The identification of this susceptibility locus provides new insights into the pathogenesis of adolescent idiopathic scoliosis.  相似文献   
133.
We carried out a meta-analysis of data from three genome-wide association (GWA) studies of type 1 diabetes (T1D), testing 305,090 SNPs in 3,561 T1D cases and 4,646 controls of European ancestry. We obtained further support for 4q27 (IL2-IL21, P = 1.9 x 10(-8)) and, after genotyping an additional 6,225 cases, 6,946 controls and 2,828 families, convincing evidence for four previously unknown and distinct risk loci in chromosome regions 6q15 (BACH2, P = 4.7 x 10(-12)), 10p15 (PRKCQ, P = 3.7 x 10(-9)), 15q24 (CTSH, P = 3.2 x 10(-15)) and 22q13 (C1QTNF6, P = 2.0 x 10(-8)).  相似文献   
134.
135.
We present a genome-wide association study of ileal Crohn disease and two independent replication studies that identify several new regions of association to Crohn disease. Specifically, in addition to the previously established CARD15 and IL23R associations, we identified strong and significantly replicated associations (combined P < 10(-10)) with an intergenic region on 10q21.1 and a coding variant in ATG16L1, the latter of which was also recently reported by another group. We also report strong associations with independent replication to variation in the genomic regions encoding PHOX2B, NCF4 and a predicted gene on 16q24.1 (FAM92B). Finally, we demonstrate that ATG16L1 is expressed in intestinal epithelial cell lines and that functional knockdown of this gene abrogates autophagy of Salmonella typhimurium. Together, these findings suggest that autophagy and host cell responses to intracellular microbes are involved in the pathogenesis of Crohn disease.  相似文献   
136.
137.
CD4(+) T-helper cells that selectively produce interleukin (IL)-17 (T(H)17), are critical for host defence and autoimmunity. Although crucial for T(H)17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been proposed to be the factors responsible for initiating specification. Here we show that T(H)17 differentiation can occur in the absence of TGF-β signalling. Neither IL-6 nor IL-23 alone efficiently generated T(H)17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naive precursors, independently of TGF-β. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed RORγt (encoded by Rorc) and T-bet. T-bet(+)RORγt(+) T(H)17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred T(H)17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data indicate an alternative mode for T(H)17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.  相似文献   
138.
The identification of somatic activating mutations in JAK2 (refs?1–4) and in the thrombopoietin receptor gene (MPL) in most patients with myeloproliferative neoplasm (MPN) led to the clinical development of JAK2 kinase inhibitors. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms but does not significantly decrease or eliminate the MPN clone in most patients with MPN. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic inhibition of JAK2. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK–STAT signalling and with heterodimerization between activated JAK2 and JAK1 or TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible: JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, in murine models and in patients treated with JAK2 inhibitors. RNA interference and pharmacological studies show that JAK2-inhibitor-persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors.  相似文献   
139.
We compared physical and vegetative habitat characteristics at 14 dam sites occupied by beaver ( Castor Canadensis ) with those at 41 random unoccupied reaches to identify features important to dam-site selection in the Long Creek basin, Grant County, Oregon. Stream reaches with dams were shallower and had a lower gradient than unoccupied reaches. Beaver did not build dams at sites with a rock substrate. Bank slopes at occupied reaches were not as steep as those at unoccupied reaches; and occupied stream reaches had greater tree canopy cover, especially of thinleaf alder ( Alnus tenuifolia ), than did unused reaches. A discriminant model using transformations of bank slope, stream gradient, and hardwood cover classified all beaver dam sites correctly and 35 of 41 random sites as unoccupied sites. The 6 misclassified sites had rock substrates. We also tested four habitat suitability models for beaver in this basin. Three models produced significantly different ( P < .05) scores between occupied and random unoccupied reaches, suggesting that they might have some utility for this region.  相似文献   
140.
Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号