首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   8篇
  国内免费   12篇
系统科学   26篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   13篇
现状及发展   252篇
研究方法   212篇
综合类   803篇
自然研究   60篇
  2020年   5篇
  2018年   14篇
  2017年   17篇
  2016年   7篇
  2015年   12篇
  2014年   16篇
  2013年   18篇
  2012年   99篇
  2011年   188篇
  2010年   37篇
  2009年   9篇
  2008年   101篇
  2007年   102篇
  2006年   95篇
  2005年   119篇
  2004年   93篇
  2003年   72篇
  2002年   87篇
  2001年   21篇
  2000年   14篇
  1999年   8篇
  1994年   3篇
  1992年   2篇
  1991年   7篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   14篇
  1976年   8篇
  1975年   9篇
  1974年   14篇
  1973年   7篇
  1972年   7篇
  1971年   12篇
  1970年   14篇
  1969年   17篇
  1968年   12篇
  1967年   11篇
  1966年   10篇
  1965年   7篇
排序方式: 共有1368条查询结果,搜索用时 62 毫秒
921.
Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-α and REV-ERB-β have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.  相似文献   
922.
Libby T  Moore TY  Chang-Siu E  Li D  Cohen DJ  Jusufi A  Full RJ 《Nature》2012,481(7380):181-184
In 1969, a palaeontologist proposed that theropod dinosaurs used their tails as dynamic stabilizers during rapid or irregular movements, contributing to their depiction as active and agile predators. Since then the inertia of swinging appendages has been implicated in stabilizing human walking, aiding acrobatic manoeuvres by primates and rodents, and enabling cats to balance on branches. Recent studies on geckos suggest that active tail stabilization occurs during climbing, righting and gliding. By contrast, studies on the effect of lizard tail loss show evidence of a decrease, an increase or no change in performance. Application of a control-theoretic framework could advance our general understanding of inertial appendage use in locomotion. Here we report that lizards control the swing of their tails in a measured manner to redirect angular momentum from their bodies to their tails, stabilizing body attitude in the sagittal plane. We video-recorded Red-Headed Agama lizards (Agama agama) leaping towards a vertical surface by first vaulting onto an obstacle with variable traction to induce a range of perturbations in body angular momentum. To examine a known controlled tail response, we built a lizard-sized robot with an active tail that used sensory feedback to stabilize pitch as it drove off a ramp. Our dynamics model revealed that a body swinging its tail experienced less rotation than a body with a rigid tail, a passively compliant tail or no tail. To compare a range of tails, we calculated tail effectiveness as the amount of tailless body rotation a tail could stabilize. A model Velociraptor mongoliensis supported the initial tail stabilization hypothesis, showing as it did a greater tail effectiveness than the Agama lizards. Leaping lizards show that inertial control of body attitude can advance our understanding of appendage evolution and provide biological inspiration for the next generation of manoeuvrable search-and-rescue robots.  相似文献   
923.
Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.  相似文献   
924.
为寻找潜在的产生埃博霉素(epothilone)的纤维堆囊菌(Sorangium cellulosum),以埃博霉素生物合成基因簇中的epoA,epoC和epoK基因为探针,分别对60株不同土壤样品来源的纤维堆囊菌的DNA样品进行PCR筛选.筛选结果得到了7株阳性菌株,进一步对其进行发酵和粗提物的HPLC-MS分析,检测结果显示3株菌XMU-Nc-03,XMU-So-64和XMU-So-112能产生埃博霉素B,其中XMU-So-112的产量最高.本实验在筛选产埃博霉素活性菌株的同时,还建立了一个快速可靠的发现埃博霉素产生菌的方法.  相似文献   
925.
926.
Although exceptional examples of adaptation are frequently celebrated, some outcomes of natural selection seem far from perfect. For example, many hoverflies (Diptera: Syrphidae) are harmless (Batesian) mimics of stinging Hymenoptera. However, although some hoverfly species are considered excellent mimics, other species bear only a superficial resemblance to their models and it is unclear why this is so. To evaluate hypotheses that have been put forward to explain interspecific variation in the mimetic fidelity of Palearctic Syrphidae we use a comparative approach. We show that the most plausible explanation is that predators impose less selection for mimetic fidelity on smaller hoverfly species because they are less profitable prey items. In particular, our findings, in combination with previous results, allow us to reject several key hypotheses for imperfect mimicry: first, human ratings of mimetic fidelity are positively correlated with both morphometric measures and avian rankings, indicating that variation in mimetic fidelity is not simply an illusion based on human perception; second, no species of syrphid maps out in multidimensional space as being intermediate in appearance between several different hymenopteran model species, as the multimodel hypothesis requires; and third, we find no evidence for a negative relationship between mimetic fidelity and abundance, which calls into question the kin-selection hypothesis. By contrast, a strong positive relationship between mimetic fidelity and body size supports the relaxed-selection hypothesis, suggesting that reduced predation pressure on less profitable prey species limits the selection for mimetic perfection.  相似文献   
927.
Kim C  Schmidt T  Cho EG  Ye F  Ulmer TS  Ginsberg MH 《Nature》2012,481(7380):209-213
Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys?716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys?716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys?716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro?711) introduced a TMD kink of 30?±?1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.  相似文献   
928.
929.
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号