首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   0篇
系统科学   4篇
教育与普及   1篇
理论与方法论   4篇
现状及发展   35篇
研究方法   38篇
综合类   170篇
自然研究   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2013年   1篇
  2012年   24篇
  2011年   29篇
  2010年   11篇
  2009年   4篇
  2008年   22篇
  2007年   20篇
  2006年   30篇
  2005年   22篇
  2004年   21篇
  2003年   20篇
  2002年   19篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
241.
General anaesthetics have enjoyed long and widespread use but their molecular mechanism of action remains poorly understood. There is good evidence that their principal targets are pentameric ligand-gated ion channels (pLGICs) such as inhibitory GABA(A) (γ-aminobutyric acid) receptors and excitatory nicotinic acetylcholine receptors, which are respectively potentiated and inhibited by general anaesthetics. The bacterial homologue from Gloeobacter violaceus (GLIC), whose X-ray structure was recently solved, is also sensitive to clinical concentrations of general anaesthetics. Here we describe the crystal structures of the complexes propofol/GLIC and desflurane/GLIC. These reveal a common general-anaesthetic binding site, which pre-exists in the apo-structure in the upper part of the transmembrane domain of each protomer. Both molecules establish van der Waals interactions with the protein; propofol binds at the entrance of the cavity whereas the smaller, more flexible, desflurane binds deeper inside. Mutations of some amino acids lining the binding site profoundly alter the ionic response of GLIC to protons, and affect its general-anaesthetic pharmacology. Molecular dynamics simulations, performed on the wild type (WT) and two GLIC mutants, highlight differences in mobility of propofol in its binding site and help to explain these effects. These data provide a novel structural framework for the design of general anaesthetics and of allosteric modulators of brain pLGICs.  相似文献   
242.
243.
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts   总被引:1,自引:0,他引:1  
Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-α, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.  相似文献   
244.
Misrepair of DNA double-strand breaks produced by the V(D)J recombinase (the RAG1/RAG2 proteins) at immunoglobulin (Ig) and T cell receptor (Tcr) loci has been implicated in pathogenesis of lymphoid malignancies in humans and in mice. Defects in DNA damage response factors such as ataxia telangiectasia mutated (ATM) protein and combined deficiencies in classical non-homologous end joining and p53 predispose to RAG-initiated genomic rearrangements and lymphomagenesis. Although we showed previously that RAG1/RAG2 shepherd the broken DNA ends to classical non-homologous end joining for proper repair, roles for the RAG proteins in preserving genomic stability remain poorly defined. Here we show that the RAG2 carboxy (C) terminus, although dispensable for recombination, is critical for maintaining genomic stability. Thymocytes from 'core' Rag2 homozygotes (Rag2(c/c) mice) show dramatic disruption of Tcrα/δ locus integrity. Furthermore, all Rag2(c/c) p53(-/-) mice, unlike Rag1(c/c) p53(-/-) and p53(-/-) animals, rapidly develop thymic lymphomas bearing complex chromosomal translocations, amplifications and deletions involving the Tcrα/δ and Igh loci. We also find these features in lymphomas from Atm(-/-) mice. We show that, like ATM-deficiency, core RAG2 severely destabilizes the RAG post-cleavage complex. These results reveal a novel genome guardian role for RAG2 and suggest that similar 'end release/end persistence' mechanisms underlie genomic instability and lymphomagenesis in Rag2(c/c) p53(-/-) and Atm(-/-) mice.  相似文献   
245.
The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.  相似文献   
246.
247.
The cellular machinery promoting phagocytosis of corpses of apoptotic cells is well conserved from worms to mammals. An important component is the Caenorhabditis elegans engulfment receptor CED-1 (ref. 1) and its Drosophila orthologue, Draper. The CED-1/Draper signalling pathway is also essential for the phagocytosis of other types of 'modified self' including necrotic cells, developmentally pruned axons and dendrites, and axons undergoing Wallerian degeneration. Here we show that Drosophila Shark, a non-receptor tyrosine kinase similar to mammalian Syk and Zap-70, binds Draper through an immunoreceptor tyrosine-based activation motif (ITAM) in the Draper intracellular domain. We show that Shark activity is essential for Draper-mediated signalling events in vivo, including the recruitment of glial membranes to severed axons and the phagocytosis of axonal debris and neuronal cell corpses by glia. We also show that the Src family kinase (SFK) Src42A can markedly increase Draper phosphorylation and is essential for glial phagocytic activity. We propose that ligand-dependent Draper receptor activation initiates the Src42A-dependent tyrosine phosphorylation of Draper, the association of Shark and the activation of the Draper pathway. These Draper-Src42A-Shark interactions are strikingly similar to mammalian immunoreceptor-SFK-Syk signalling events in mammalian myeloid and lymphoid cells. Thus, Draper seems to be an ancient immunoreceptor with an extracellular domain tuned to modified self, and an intracellular domain promoting phagocytosis through an ITAM-domain-SFK-Syk-mediated signalling cascade.  相似文献   
248.
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.  相似文献   
249.
Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.  相似文献   
250.
Boc is a receptor for sonic hedgehog in the guidance of commissural axons   总被引:1,自引:0,他引:1  
In the spinal cord, sonic hedgehog (Shh) is secreted by the floor plate to control the generation of distinct classes of ventral neurons along the dorsoventral axis. Genetic and in vitro studies have shown that Shh also later acts as a midline-derived chemoattractant for commissural axons. However, the receptor(s) responsible for Shh attraction remain unknown. Here we show that two Robo-related proteins, Boc and Cdon, bind specifically to Shh and are therefore candidate receptors for the action of Shh as an axon guidance ligand. Boc is expressed by commissural neurons, and targeted disruption of Boc in mouse results in the misguidance of commissural axons towards the floor plate. RNA-interference-mediated knockdown of Boc impairs the ability of rat commissural axons to turn towards an ectopic source of Shh in vitro. Taken together, these data suggest that Boc is essential as a receptor for Shh in commissural axon guidance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号