首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14865篇
  免费   34篇
  国内免费   66篇
系统科学   59篇
丛书文集   104篇
教育与普及   33篇
理论与方法论   43篇
现状及发展   6374篇
研究方法   712篇
综合类   7409篇
自然研究   231篇
  2012年   205篇
  2011年   450篇
  2010年   86篇
  2009年   83篇
  2008年   260篇
  2007年   314篇
  2006年   293篇
  2005年   290篇
  2004年   299篇
  2003年   259篇
  2002年   304篇
  2001年   539篇
  2000年   569篇
  1999年   367篇
  1994年   285篇
  1992年   328篇
  1991年   256篇
  1990年   283篇
  1989年   248篇
  1988年   229篇
  1987年   252篇
  1986年   259篇
  1985年   367篇
  1984年   267篇
  1983年   223篇
  1982年   189篇
  1981年   194篇
  1980年   202篇
  1979年   442篇
  1978年   381篇
  1977年   339篇
  1976年   305篇
  1975年   326篇
  1974年   341篇
  1973年   279篇
  1972年   300篇
  1971年   387篇
  1970年   517篇
  1969年   370篇
  1968年   351篇
  1967年   349篇
  1966年   337篇
  1965年   223篇
  1959年   141篇
  1958年   203篇
  1957年   160篇
  1956年   109篇
  1955年   99篇
  1954年   113篇
  1948年   95篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
981.
Poskanzer KE  Marek KW  Sweeney ST  Davis GW 《Nature》2003,426(6966):559-563
Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.  相似文献   
982.
Past studies have suggested that long-duration gamma-ray bursts have a 'standard' energy of E(gamma) approximately 10(51) erg in the ultra-relativistic ejecta, after correcting for asymmetries in the explosion ('jets'). But a group of sub-energetic bursts, including the peculiar GRB980425 associated with the supernova SN1998bw (E(gamma) approximately 10(48) erg), has recently been identified. Here we report radio observations of GRB030329 that allow us to undertake calorimetry of the explosion. Our data require a two-component explosion: a narrow (5 degrees opening angle) ultra-relativistic component responsible for the gamma-rays and early afterglow, and a wide, mildly relativistic component that produces the radio and optical afterglow more than 1.5 days after the explosion. The total energy release, which is dominated by the wide component, is similar to that of other gamma-ray bursts, but the contribution of the gamma-rays is energetically minor. Given the firm link of GRB030329 with SN2003dh, our result indicates a common origin for cosmic explosions in which, for reasons not yet understood, the energy in the highest-velocity ejecta is extremely variable.  相似文献   
983.
Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.  相似文献   
984.
Vortices occur naturally in a wide range of gases and fluids, from macroscopic to microscopic scales. In Bose-Einstein condensates of dilute atomic gases, superfluid helium and superconductors, the existence of vortices is a consequence of the quantum nature of the system. Quantized vortices of supercurrent are generated by magnetic flux penetrating the material, and play a key role in determining the material properties and the performance of superconductor-based devices. At high temperatures the dynamics of such vortices are essentially classical, while at low temperatures previous experiments have suggested collective quantum dynamics. However, the question of whether vortex tunnelling occurs at low temperatures has been addressed only for large collections of vortices. Here we study the quantum dynamics of an individual vortex in a superconducting Josephson junction. By measuring the statistics of the vortex escape from a controllable pinning potential, we demonstrate the existence of quantized levels of the vortex energy within the trapping potential well and quantum tunnelling of the vortex through the pinning barrier.  相似文献   
985.
Schaak RE  Klimczuk T  Foo ML  Cava RJ 《Nature》2003,424(6948):527-529
The microscopic origin of superconductivity in the high-transition-temperature (high-T(c)) copper oxides remains the subject of active inquiry; several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics, for both the copper oxides and other superconductors, is the dependence of the superconducting T(c) on the degree of electronic band filling. The recent report of superconductivity near 4 K in the layered sodium cobalt oxyhydrate, Na(0.35)CoO2*1.3H2O, is of interest owing to both its triangular cobalt-oxygen lattice and its generally analogous chemical and structural relationships to the copper oxide superconductors. Here we show that the superconducting T(c) of this compound displays the same kind of behaviour on chemical doping that is observed in the high-T(c) copper oxides. Specifically, the optimal superconducting T(c) occurs in a narrow range of sodium concentrations (and therefore electron concentrations) and decreases for both underdoped and overdoped materials, as observed in the phase diagram of the copper oxide superconductors. The analogy is not perfect, however, suggesting that Na(x)CoO2*1.3H2O, with its triangular lattice geometry and special magnetic characteristics, may provide insights into systems where coupled charge and spin dynamics play an essential role in leading to superconductivity.  相似文献   
986.
Photonic crystal fibres (PCFs) offer greatly enhanced design freedom compared to standard optical fibres. For example, they allow precise control of the chromatic dispersion (CD) profile--the frequency dependence of propagation speed--over a broad wavelength range. This permits studies of nonlinear pulse propagation in previously inaccessible parameter regimes. Here we report on spectral broadening of 100-fs pulses in PCFs with anomalously flat CD profiles. Maps of the spectral and spatio-temporal behaviour as a function of power show that dramatic conversion (to both longer and shorter wavelengths) can occur in remarkably short lengths of fibre, depending on the magnitude and shape of the CD profile. Because the PCFs used are single-mode at all wavelengths, the light always emerges in a fundamental guided mode. Excellent agreement is obtained between the experimental results and numerical solutions of the nonlinear wave equation, indicating that the underlying processes can be reliably modelled. These results show how, through appropriate choice of CD, nonlinearities can be efficiently harnessed to generate laser light at new wavelengths.  相似文献   
987.
Shelby JP  Lim DS  Kuo JS  Chiu DT 《Nature》2003,425(6953):38
Microfluidic systems can conveniently be used for rapid analysis of biological samples. Here we describe a single re-circulating flow, or microvortex, that can generate a maximum fluid rotational velocity of up to 12 m s(-1) and a corresponding radial acceleration in excess of 10(6)g. Such microvortices may be exploited in centrifugal microdevices to investigate the effects of high radial acceleration on biological and chemical processes.  相似文献   
988.
Su HT  Hsu RR  Chen AB  Wang YC  Hsiao WS  Lai WC  Lee LC  Sato M  Fukunishi H 《Nature》2003,423(6943):974-976
Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.  相似文献   
989.
Fennimore AM  Yuzvinsky TD  Han WQ  Fuhrer MS  Cumings J  Zettl A 《Nature》2003,424(6947):408-410
Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.  相似文献   
990.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号