首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   1篇
  国内免费   3篇
系统科学   3篇
理论与方法论   3篇
现状及发展   237篇
研究方法   54篇
综合类   168篇
自然研究   7篇
  2018年   5篇
  2017年   7篇
  2016年   7篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   33篇
  2011年   31篇
  2010年   7篇
  2009年   4篇
  2008年   20篇
  2007年   22篇
  2006年   18篇
  2005年   20篇
  2004年   14篇
  2003年   15篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1996年   3篇
  1995年   3篇
  1992年   10篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1975年   6篇
  1974年   12篇
  1973年   8篇
  1972年   6篇
  1971年   15篇
  1970年   9篇
  1969年   6篇
  1968年   15篇
  1967年   9篇
  1966年   6篇
  1965年   12篇
  1964年   9篇
  1963年   5篇
  1956年   2篇
  1955年   3篇
  1947年   2篇
排序方式: 共有472条查询结果,搜索用时 343 毫秒
11.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.  相似文献   
12.
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.  相似文献   
13.
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.  相似文献   
14.
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin–proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.  相似文献   
15.
Common fragile sites (CFSs) are large chromosomal regions long identified by conventional cytogenetics as sequences prone to breakage in cells subjected to replication stress. The interest in CFSs came from their key role in the formation of DNA damage, resulting in chromosomal rearrangements. The instability of CFSs was notably correlated with the appearance of genome instability in precancerous lesions and during tumor progression. Identification of the molecular mechanisms responsible for their instability therefore represents a major challenge. A number of data show that breaks result from mitotic entry before replication completion but the mechanisms responsible for such delayed replication of CFSs and relaxed checkpoint surveillance are still debated. In addition, clues to the molecular events leading to breakage just start to emerge. We present here the results of recent reports addressing these questions.  相似文献   
16.
17.
18.
Ewing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10(-20); odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10(-17); OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10(-9); OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2.  相似文献   
19.
To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.  相似文献   
20.
Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号