首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
系统科学   1篇
现状及发展   2篇
研究方法   6篇
综合类   7篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2008年   2篇
  2007年   3篇
  2003年   1篇
  2002年   3篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 156 毫秒
11.
Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma, and because mesothelioma clustering is observed in some families, we searched for genetic predisposing factors. We discovered germline mutations in the gene encoding BRCA1 associated protein-1 (BAP1) in two families with a high incidence of mesothelioma, and we observed somatic alterations affecting BAP1 in familial mesotheliomas, indicating biallelic inactivation. In addition to mesothelioma, some BAP1 mutation carriers developed uveal melanoma. We also found germline BAP1 mutations in 2 of 26 sporadic mesotheliomas; both individuals with mutant BAP1 were previously diagnosed with uveal melanoma. We also observed somatic truncating BAP1 mutations and aberrant BAP1 expression in sporadic mesotheliomas without germline mutations. These results identify a BAP1-related cancer syndrome that is characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved and that mesothelioma predominates upon asbestos exposure. These findings will help to identify individuals at high risk of mesothelioma who could be targeted for early intervention.  相似文献   
12.
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.  相似文献   
13.
An array of rapidly inactivating voltage-gated K+ channels is distributed throughout the nervous systems of vertebrates and invertebrates. Although these channels are thought to regulate the excitability of neurons by attenuating voltage signals, their specific functions are often poorly understood. We studied the role of the prototypical inactivating K+ conductance, Shaker, in Drosophila photoreceptors by recording intracellularly from wild-type and Shaker mutant photoreceptors. Here we show that loss of the Shaker K+ conductance produces a marked reduction in the signal-to-noise ratio of photoreceptors, generating a 50% decrease in the information capacity of these cells in fully light-adapted conditions. By combining experiments with modelling, we show that the inactivation of Shaker K+ channels amplifies voltage signals and enables photoreceptors to use their voltage range more effectively. Loss of the Shaker conductance attenuated the voltage signal and induced a compensatory decrease in impedance. Our results demonstrate the importance of the Shaker K+ conductance for neural coding precision and as a mechanism for selectively amplifying graded signals in neurons, and highlight the effect of compensatory mechanisms on neuronal information processing.  相似文献   
14.
Stroke is the world's third leading cause of death. One cause of stroke, intracranial aneurysm, affects approximately 2% of the population and accounts for 500,000 hemorrhagic strokes annually in mid-life (median age 50), most often resulting in death or severe neurological impairment. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24-1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.  相似文献   
15.
Human chromosome 14q32.2 carries a cluster of imprinted genes including paternally expressed genes (PEGs) such as DLK1 and RTL1 and maternally expressed genes (MEGs) such as MEG3 (also known as GTL2), RTL1as (RTL1 antisense) and MEG8 (refs. 1,2), together with the intergenic differentially methylated region (IG-DMR) and the MEG3-DMR. Consistent with this, paternal and maternal uniparental disomy for chromosome 14 (upd(14)pat and upd(14)mat) cause distinct phenotypes. We studied eight individuals (cases 1-8) with a upd(14)pat-like phenotype and three individuals (cases 9-11) with a upd(14)mat-like phenotype in the absence of upd(14) and identified various deletions and epimutations affecting the imprinted region. The results, together with recent mouse data, imply that the IG-DMR has an important cis-acting regulatory function on the maternally inherited chromosome and that excessive RTL1 expression and decreased DLK1 and RTL1 expression are relevant to upd(14)pat-like and upd(14)mat-like phenotypes, respectively.  相似文献   
16.
Germline gain-of-function mutations in RAF1 cause Noonan syndrome   总被引:11,自引:0,他引:11  
Noonan syndrome is characterized by short stature, facial dysmorphia and a wide spectrum of congenital heart defects. Mutations of PTPN11, KRAS and SOS1 in the RAS-MAPK pathway cause approximately 60% of cases of Noonan syndrome. However, the gene(s) responsible for the remainder are unknown. We have identified five different mutations in RAF1 in ten individuals with Noonan syndrome; those with any of four mutations causing changes in the CR2 domain of RAF1 had hypertrophic cardiomyopathy (HCM), whereas affected individuals with mutations leading to changes in the CR3 domain did not. Cells transfected with constructs containing Noonan syndrome-associated RAF1 mutations showed increased in vitro kinase and ERK activation, and zebrafish embryos with morpholino knockdown of raf1 demonstrated the need for raf1 for the development of normal myocardial structure and function. Thus, our findings implicate RAF1 gain-of-function mutations as a causative agent of a human developmental disorder, representing a new genetic mechanism for the activation of the MAPK pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号