首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   1篇
  国内免费   3篇
系统科学   3篇
理论与方法论   5篇
现状及发展   25篇
研究方法   27篇
综合类   88篇
自然研究   6篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   13篇
  2011年   19篇
  2010年   6篇
  2009年   3篇
  2008年   10篇
  2007年   9篇
  2006年   14篇
  2005年   11篇
  2004年   16篇
  2003年   5篇
  2002年   15篇
  2000年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
61.
62.
63.
Microscopy is an essential technique for observation on living cells. There is currently great interest in apply scanning probe microscopy to image living biological cells in their natural environment at the nanometer scale. Scanning ion conductance microscopy is a new form of scanning probe microscopy, which enables non-contact high resolution imaging of living biological cells. Based on a scanned nanopipette in physiological buffer, the distance feedback control uses the ion current to control the distance between the pipette tip and the sample surface. However, this feedback control has difficulties over slopes on convoluted cell surfaces, which limits its resolution. In this study, we present an improved form of feedback control that removes the contribution of up to the third order slope from the ion current signal, hence providing a more accurate signal for controlling the distance. We show that this allows faster and lower noise topographic high resolution imaging.  相似文献   
64.
Experimental and theoretical study of mitotic spindle orientation   总被引:1,自引:0,他引:1  
  相似文献   
65.
Widespread loss of cerebral connectivity is assumed to underlie the failure of brain mechanisms that support communication and goal-directed behaviour following severe traumatic brain injury. Disorders of consciousness that persist for longer than 12 months after severe traumatic brain injury are generally considered to be immutable; no treatment has been shown to accelerate recovery or improve functional outcome in such cases. Recent studies have shown unexpected preservation of large-scale cerebral networks in patients in the minimally conscious state (MCS), a condition that is characterized by intermittent evidence of awareness of self or the environment. These findings indicate that there might be residual functional capacity in some patients that could be supported by therapeutic interventions. We hypothesize that further recovery in some patients in the MCS is limited by chronic underactivation of potentially recruitable large-scale networks. Here, in a 6-month double-blind alternating crossover study, we show that bilateral deep brain electrical stimulation (DBS) of the central thalamus modulates behavioural responsiveness in a patient who remained in MCS for 6 yr following traumatic brain injury before the intervention. The frequency of specific cognitively mediated behaviours (primary outcome measures) and functional limb control and oral feeding (secondary outcome measures) increased during periods in which DBS was on as compared with periods in which it was off. Logistic regression modelling shows a statistical linkage between the observed functional improvements and recent stimulation history. We interpret the DBS effects as compensating for a loss of arousal regulation that is normally controlled by the frontal lobe in the intact brain. These findings provide evidence that DBS can promote significant late functional recovery from severe traumatic brain injury. Our observations, years after the injury occurred, challenge the existing practice of early treatment discontinuation for patients with only inconsistent interactive behaviours and motivate further research to develop therapeutic interventions.  相似文献   
66.
Deep carbon export from a Southern Ocean iron-fertilized diatom bloom   总被引:1,自引:0,他引:1  
Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence-although each with important uncertainties-lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.  相似文献   
67.
Many cellular processes are carried out by molecular 'machines'-assemblies of multiple differentiated proteins that physically interact to execute biological functions. Despite much speculation, strong evidence of the mechanisms by which these assemblies evolved is lacking. Here we use ancestral gene resurrection and manipulative genetic experiments to determine how the complexity of an essential molecular machine--the hexameric transmembrane ring of the eukaryotic V-ATPase proton pump--increased hundreds of millions of years ago. We show that the ring of Fungi, which is composed of three paralogous proteins, evolved from a more ancient two-paralogue complex because of a gene duplication that was followed by loss in each daughter copy of specific interfaces by which it interacts with other ring proteins. These losses were complementary, so both copies became obligate components with restricted spatial roles in the complex. Reintroducing a single historical mutation from each paralogue lineage into the resurrected ancestral proteins is sufficient to recapitulate their asymmetric degeneration and trigger the requirement for the more elaborate three-component ring. Our experiments show that increased complexity in an essential molecular machine evolved because of simple, high-probability evolutionary processes, without the apparent evolution of novel functions. They point to a plausible mechanism for the evolution of complexity in other multi-paralogue protein complexes.  相似文献   
68.
69.
The bacteria causing diphtheria, whooping cough, cholera and other diseases secrete mono-ADP-ribosylating toxins that modify intracellular proteins. Here, we describe four structures of a catalytically active complex between a fragment of Pseudomonas aeruginosa exotoxin A (ETA) and its protein substrate, translation elongation factor 2 (eEF2). The target residue in eEF2, diphthamide (a modified histidine), spans across a cleft and faces the two phosphates and a ribose of the non-hydrolysable NAD+ analogue, betaTAD. This suggests that the diphthamide is involved in triggering NAD+ cleavage and interacting with the proposed oxacarbenium intermediate during the nucleophilic substitution reaction, explaining the requirement of diphthamide for ADP ribosylation. Diphtheria toxin may recognize eEF2 in a manner similar to ETA. Notably, the toxin-bound betaTAD phosphates mimic the phosphate backbone of two nucleotides in a conformational switch of 18S rRNA, thereby achieving universal recognition of eEF2 by ETA.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号