首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   2篇
  国内免费   3篇
系统科学   34篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   95篇
研究方法   96篇
综合类   233篇
自然研究   14篇
  2021年   3篇
  2020年   4篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   27篇
  2011年   66篇
  2010年   10篇
  2009年   2篇
  2008年   39篇
  2007年   38篇
  2006年   36篇
  2005年   32篇
  2004年   27篇
  2003年   19篇
  2002年   30篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   6篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1971年   4篇
  1970年   7篇
  1969年   5篇
  1968年   5篇
  1967年   2篇
  1966年   3篇
  1965年   8篇
  1963年   1篇
  1962年   1篇
  1954年   1篇
排序方式: 共有477条查询结果,搜索用时 15 毫秒
151.
The protein-protein interaction map of Helicobacter pylori   总被引:33,自引:0,他引:33  
With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function. As elementary constituents of cellular protein complexes and pathways, protein-protein interactions are key determinants of protein function. Here we have built a large-scale protein-protein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single protein-protein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.  相似文献   
152.
Screening slaughtered cattle for BSE   总被引:4,自引:0,他引:4  
Deslys JP  Comoy E  Hawkins S  Simon S  Schimmel H  Wells G  Grassi J  Moynagh J 《Nature》2001,409(6819):476-478
  相似文献   
153.
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy and increased incidence in diabetes. FRDA is caused by severely reduced levels of frataxin, a mitochondrial protein of unknown function. Yeast knockout models as well as histological and biochemical data from heart biopsies or autopsies of FRDA patients have shown that frataxin defects cause a specific iron-sulfur protein deficiency and intramitochondrial iron accumulation. We have recently shown that complete absence of frataxin in the mouse leads to early embryonic lethality, demonstrating an important role for frataxin during mouse development. Through a conditional gene-targeting approach, we have generated in parallel a striated muscle frataxin-deficient line and a neuron/cardiac muscle frataxin-deficient line, which together reproduce important progressive pathophysiological and biochemical features of the human disease: cardiac hypertrophy without skeletal muscle involvement, large sensory neuron dysfunction without alteration of the small sensory and motor neurons, and deficient activities of complexes I-III of the respiratory chain and of the aconitases. Our models demonstrate time-dependent intramitochondrial iron accumulation in a frataxin-deficient mammal, which occurs after onset of the pathology and after inactivation of the Fe-S-dependent enzymes. These mutant mice represent the first mammalian models to evaluate treatment strategies for the human disease.  相似文献   
154.
155.
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces “aging-like” effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.  相似文献   
156.
157.
The celebrated Swedish natural philosopher and visionary theologian Emanuel Swedenborg (1688–1772) devoted major efforts to the establishment of a reliable method for the determination of longitude at sea. He first formulated a method, based on the astronomical observation of lunar position, while in London in 1710–12. He issued various versions of the method, both in Latin and in Swedish, throughout his career. In 1766, at the age of 78, he presented his scheme for judgment by the Board of Longitude in London. The rich archive of Swedenborg's career allows an unusually detailed historical analysis of his longitude project, an analysis rather better documented than that available for the host of contemporary projectors who launched longitude schemes, submitted their proposals to the Board of Longitude, and have too often been ignored or dismissed by historians. This analysis uses the longitude work to illuminate key aspects of Swedenborg's wider enterprises, including his scheme to set up an astronomical observatory in southern Sweden to be devoted to lunar and stellar observation, his complex attitude to astronomical and magnetic cosmology, and his attempt to fit the notion of longitude into his visionary world-view. Swedenborg's programme also helps make better sense of the metropolitan and international networks of diplomatic and natural philosophical communication in which the longitude schemes were developed and judged. It emerges that his longitude method owed much to the established principles of earlier Baroque and Jesuit natural philosophy while his mature cosmology sought a rational and enlightened model of the universe.  相似文献   
158.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.  相似文献   
159.
The simple mechanical oscillator, canonically consisting of a coupled mass-spring system, is used in a wide variety of sensitive measurements, including the detection of weak forces and small masses. On the one hand, a classical oscillator has a well-defined amplitude of motion; a quantum oscillator, on the other hand, has a lowest-energy state, or ground state, with a finite-amplitude uncertainty corresponding to zero-point motion. On the macroscopic scale of our everyday experience, owing to interactions with its highly fluctuating thermal environment a mechanical oscillator is filled with many energy quanta and its quantum nature is all but hidden. Recently, in experiments performed at temperatures of a few hundredths of a kelvin, engineered nanomechanical resonators coupled to electrical circuits have been measured to be oscillating in their quantum ground state. These experiments, in addition to providing a glimpse into the underlying quantum behaviour of mesoscopic systems consisting of billions of atoms, represent the initial steps towards the use of mechanical devices as tools for quantum metrology or as a means of coupling hybrid quantum systems. Here we report the development of a coupled, nanoscale optical and mechanical resonator formed in a silicon microchip, in which radiation pressure from a laser is used to cool the mechanical motion down to its quantum ground state (reaching an average phonon occupancy number of 0.85 ± 0.08). This cooling is realized at an environmental temperature of 20?K, roughly one thousand times larger than in previous experiments and paves the way for optical control of mesoscale mechanical oscillators in the quantum regime.  相似文献   
160.
Dunn M  Greenhill SJ  Levinson SC  Gray RD 《Nature》2011,473(7345):79-82
Languages vary widely but not without limit. The central goal of linguistics is to describe the diversity of human languages and explain the constraints on that diversity. Generative linguists following Chomsky have claimed that linguistic diversity must be constrained by innate parameters that are set as a child learns a language. In contrast, other linguists following Greenberg have claimed that there are statistical tendencies for co-occurrence of traits reflecting universal systems biases, rather than absolute constraints or parametric variation. Here we use computational phylogenetic methods to address the nature of constraints on linguistic diversity in an evolutionary framework. First, contrary to the generative account of parameter setting, we show that the evolution of only a few word-order features of languages are strongly correlated. Second, contrary to the Greenbergian generalizations, we show that most observed functional dependencies between traits are lineage-specific rather than universal tendencies. These findings support the view that-at least with respect to word order-cultural evolution is the primary factor that determines linguistic structure, with the current state of a linguistic system shaping and constraining future states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号