首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1470篇
  免费   19篇
  国内免费   47篇
系统科学   31篇
丛书文集   2篇
教育与普及   5篇
理论与方法论   16篇
现状及发展   311篇
研究方法   195篇
综合类   942篇
自然研究   34篇
  2019年   9篇
  2018年   24篇
  2017年   20篇
  2016年   11篇
  2015年   18篇
  2014年   28篇
  2013年   29篇
  2012年   116篇
  2011年   144篇
  2010年   51篇
  2009年   35篇
  2008年   89篇
  2007年   102篇
  2006年   88篇
  2005年   96篇
  2004年   69篇
  2003年   86篇
  2002年   74篇
  2001年   55篇
  2000年   56篇
  1999年   26篇
  1997年   6篇
  1996年   5篇
  1992年   14篇
  1991年   15篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1985年   10篇
  1983年   5篇
  1982年   6篇
  1981年   7篇
  1980年   9篇
  1979年   11篇
  1978年   8篇
  1977年   11篇
  1976年   6篇
  1975年   12篇
  1974年   9篇
  1973年   13篇
  1972年   10篇
  1971年   13篇
  1970年   11篇
  1969年   10篇
  1968年   6篇
  1967年   8篇
  1966年   12篇
  1965年   10篇
排序方式: 共有1536条查询结果,搜索用时 465 毫秒
261.
262.
263.
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.  相似文献   
264.
Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.  相似文献   
265.
Ciruna B  Jenny A  Lee D  Mlodzik M  Schier AF 《Nature》2006,439(7073):220-224
Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs.  相似文献   
266.
Lee JW  Helmann JD 《Nature》2006,440(7082):363-367
The sensing of reactive oxygen species is essential for cellular responses to oxidative stress. The sensing of peroxides is typically mediated by redox-active cysteines in sensors such as the bacterial OxyR, OhrR, and Hsp33 proteins. Bacillus subtilis PerR is the prototype for a widespread family of metal-dependent peroxide sensors that regulate inducible peroxide-defence genes. Here we show that PerR senses peroxides by metal-catalysed oxidation. PerR contains two metal-binding sites: a structural Zn2+ site and a regulatory divalent metal ion site that preferentially binds Fe2+ or Mn2+ (ref. 5). Protein oxidation, catalysed by a bound ferrous ion, leads to the rapid and direct incorporation of one oxygen atom into histidine 37 (H37) or H91, two of the residues that coordinate the bound Fe2+. This mechanism accounts for the ability of PerR to sense low levels of hydrogen peroxide in vivo. The reduction of hydrogen peroxide by metal ions to generate highly reactive hydroxyl radicals underlies the genotoxic effects of peroxides, and has been shown to contribute to enzyme inactivation, but has not previously been shown to provide a regulatory mechanism for peroxide sensing.  相似文献   
267.
Misfolded proteins are associated with several pathological conditions including neurodegeneration. Although some of these abnormally folded proteins result from mutations in genes encoding disease-associated proteins (for example, repeat-expansion diseases), more general mechanisms that lead to misfolded proteins in neurons remain largely unknown. Here we demonstrate that low levels of mischarged transfer RNAs (tRNAs) can lead to an intracellular accumulation of misfolded proteins in neurons. These accumulations are accompanied by upregulation of cytoplasmic protein chaperones and by induction of the unfolded protein response. We report that the mouse sticky mutation, which causes cerebellar Purkinje cell loss and ataxia, is a missense mutation in the editing domain of the alanyl-tRNA synthetase gene that compromises the proofreading activity of this enzyme during aminoacylation of tRNAs. These findings demonstrate that disruption of translational fidelity in terminally differentiated neurons leads to the accumulation of misfolded proteins and cell death, and provide a novel mechanism underlying neurodegeneration.  相似文献   
268.
Kim S  Wong P  Coulombe PA 《Nature》2006,441(7091):362-365
Cell growth, an increase in mass and size, is a highly regulated cellular event. The Akt/mTOR (mammalian target of rapamycin) signalling pathway has a central role in the control of protein synthesis and thus the growth of cells, tissues and organisms. A striking example of a physiological context requiring rapid cell growth is tissue repair in response to injury. Here we show that keratin 17, an intermediate filament protein rapidly induced in wounded stratified epithelia, regulates cell growth through binding to the adaptor protein 14-3-3sigma. Mouse skin keratinocytes lacking keratin 17 (ref. 4) show depressed protein translation and are of smaller size, correlating with decreased Akt/mTOR signalling activity. Other signalling kinases have normal activity, pointing to the specificity of this defect. Two amino acid residues located in the amino-terminal head domain of keratin 17 are required for the serum-dependent relocalization of 14-3-3sigma from the nucleus to the cytoplasm, and for the concomitant stimulation of mTOR activity and cell growth. These findings reveal a new and unexpected role for the intermediate filament cytoskeleton in influencing cell growth and size by regulating protein synthesis.  相似文献   
269.
Metallic transport in polyaniline   总被引:2,自引:0,他引:2  
Lee K  Cho S  Park SH  Heeger AJ  Lee CW  Lee SH 《Nature》2006,441(7089):65-68
Despite nearly three decades of materials development, the transport properties in the 'metallic state' of the so-called conducting polymers are still not typical of conventional metals. The hallmark of metallic resistivity--a monotonic decrease in resistivity with temperature--has not been obtained at temperatures over the full range below room temperature; and a frequency dependent conductivity, sigma(omega), typical of metals has also not been observed. In contrast, the low-temperature behaviour of 'metallic' polymers has, in all previous cases, exhibited an increase in resistivity as temperature is further decreased, as a result of disorder-induced localization of the charge carriers. This disorder-induced localization also changes the infrared response such that sigma(omega) deviates from the prediction of Drude theory. Here we report classic metallic transport data obtained from truly metallic polymers. With polyaniline samples prepared using self-stabilized dispersion polymerization, we find that for samples having room-temperature conductivities in excess of 1,000 S cm(-1), the resistivity decreases monotonically as the temperature is lowered down to 5 K, and that the infrared spectra are characteristic of the conventional Drude model even at the lowest frequencies measured.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号