首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
现状及发展   4篇
研究方法   7篇
综合类   23篇
自然研究   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2002年   5篇
排序方式: 共有36条查询结果,搜索用时 750 毫秒
11.
We extract information on relative shopping interest from Google search volume and provide a genuine and economically meaningful approach to directly incorporate these data into a portfolio optimization technique. By generating a firm ranking based on a Google search volume metric, we can predict future sales and thus generate excess returns in a portfolio exercise. The higher the (shopping) search volume for a firm, the higher we rank the company in the optimization process. For a sample of firms in the fashion industry, our results demonstrate that shopping interest exhibits predictive content that can be exploited in a real‐time portfolio strategy yielding robust alphas around 5.5%.  相似文献   
12.
Physical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis. ACE2 metabolizes Ang II to Ang-(1–7) and is essential for the intestinal uptake of tryptophan (Trp), the 5-HT precursor. In ACE2-deficient mice, we observed a decrease in brain 5-HT levels and no increase in the number of BrdU-positive cells following exercise. Targeting the Ang II/AT1 axis by blocking the receptor, or experimentally increasing Trp/5-HT levels in the brain of ACE2-deficient mice, did not rescue the running-induced effect. Furthermore, mice lacking the Ang-(1–7) receptor, Mas, presented a normal neurogenic response to exercise. Our results identify ACE2 as a novel factor required for exercise-dependent modulation of adult neurogenesis and essential for 5-HT metabolism.  相似文献   
13.
Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns, and members of the pro-inflammatory interleukin-1 receptor (IL-1R) family, share homologies in their cytoplasmic domains called Toll/IL-1R/plant R gene homology (TIR) domains. Intracellular signalling mechanisms mediated by TIRs are similar, with MyD88 (refs 5-8) and TRAF6 (refs 9, 10) having critical roles. Signal transduction between MyD88 and TRAF6 is known to involve the serine-threonine kinase IL-1 receptor-associated kinase 1 (IRAK-1) and two homologous proteins, IRAK-2 (ref. 12) and IRAK-M. However, the physiological functions of the IRAK molecules remain unclear, and gene-targeting studies have shown that IRAK-1 is only partially required for IL-1R and TLR signalling. Here we show by gene-targeting that IRAK-4, an IRAK molecule closely related to the Drosophila Pelle protein, is indispensable for the responses of animals and cultured cells to IL-1 and ligands that stimulate various TLRs. IRAK-4-deficient animals are completely resistant to a lethal dose of lipopolysaccharide (LPS). In addition, animals lacking IRAK-4 are severely impaired in their responses to viral and bacterial challenges. Our results indicate that IRAK-4 has an essential role in innate immunity.  相似文献   
14.
Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.  相似文献   
15.
Cell polarization is a fundamental process underpinning organismal development, and tissue homeostasis, which requires an orchestrated interplay of nuclear, cytoskeletal, and centrosomal structures. The underlying molecular mechanisms, however, still remain elusive. Here we report that kinesin-1/nesprin-2/SUN-domain macromolecular assemblies, spanning the entire nuclear envelope (NE), function in cell polarization by anchoring cytoskeletal structures to the nuclear lamina. Nesprin-2 forms complexes with the kinesin-1 motor protein apparatus by associating with and recruiting kinesin light chain1 (KLC1) to the outer nuclear membrane. Similar to nesprin-2, KLC1 requires lamin A/C for proper NE localization. The depletion of nesprin-2 or KLC1, or the uncoupling of nesprin-2/SUN-domain protein associations impairs cell polarization during wounding and dislodges the centrosome from the NE. In addition nesprin-2 loss has profound effects on KLC1 levels, the cytoskeleton, and Golgi apparatus organization. Collectively these data show that NE-associated proteins are pivotal determinants of cell architecture and polarization.  相似文献   
16.
Three new species of the genus Notophthiracarus are described, identified and figured from Uluguru Mountains of Tanzania: Notophthiracarus quasiuluguruensis sp. nov, Notophthiracarus tuberculus sp. nov, and Notophthiracarus uluguruensis sp. nov. A comparison with the most closely related species of the genus Notophthiracarus is also presented.

http://zoobank.org/urn:lsid:zoobank.org:pub:3FBF24E7-3E2D-4686-AD57-EFEA25510BBD  相似文献   
17.
Breast cancer is one of the most common cancers in humans and will on average affect up to one in eight women in their lifetime in the United States and Europe. The Women's Health Initiative and the Million Women Study have shown that hormone replacement therapy is associated with an increased risk of incident and fatal breast cancer. In particular, synthetic progesterone derivatives (progestins) such as medroxyprogesterone acetate (MPA), used in millions of women for hormone replacement therapy and contraceptives, markedly increase the risk of developing breast cancer. Here we show that the in vivo administration of MPA triggers massive induction of the key osteoclast differentiation factor RANKL (receptor activator of NF-κB ligand) in mammary-gland epithelial cells. Genetic inactivation of the RANKL receptor RANK in mammary-gland epithelial cells prevents MPA-induced epithelial proliferation, impairs expansion of the CD49f(hi) stem-cell-enriched population, and sensitizes these cells to DNA-damage-induced cell death. Deletion of RANK from the mammary epithelium results in a markedly decreased incidence and delayed onset of MPA-driven mammary cancer. These data show that the RANKL/RANK system controls the incidence and onset of progestin-driven breast cancer.  相似文献   
18.
Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain. Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile 'soil'. In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs. However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour, other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-kappaB ligand) triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis, in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.  相似文献   
19.
Disruption of CREB function in brain leads to neurodegeneration   总被引:24,自引:0,他引:24  
Control of cellular survival and proliferation is dependent on extracellular signals and is a prerequisite for ordered tissue development and maintenance. Activation of the cAMP responsive element binding protein (CREB) by phosphorylation has been implicated in the survival of mammalian cells. To define its roles in the mouse central nervous system, we disrupted Creb1 in brain of developing and adult mice using the Cre/loxP system. Mice with a Crem(-/-) background and lacking Creb in the central nervous system during development show extensive apoptosis of postmitotic neurons. By contrast, mice in which both Creb1 and Crem are disrupted in the postnatal forebrain show progressive neurodegeneration in the hippocampus and in the dorsolateral striatum. The striatal phenotype is reminiscent of Huntington disease and is consistent with the postulated role of CREB-mediated signaling in polyglutamine-triggered diseases.  相似文献   
20.
Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life. In the mammalian hippocampus, a region important for spatial and episodic memory, thousands of new granule cells are produced per day, with the exact number depending on environmental conditions and physical exercise. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca2+ channels can generate isolated Ca2+ spikes and boost fast Na+ action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号