首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  国内免费   1篇
系统科学   1篇
现状及发展   5篇
研究方法   11篇
综合类   29篇
自然研究   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
排序方式: 共有47条查询结果,搜索用时 734 毫秒
31.
Astakhov SA  Burbanks AD  Wiggins S  Farrelly D 《Nature》2003,423(6937):264-267
It has been thought that the capture of irregular moons--with non-circular orbits--by giant planets occurs by a process in which they are first temporarily trapped by gravity inside the planet's Hill sphere (the region where planetary gravity dominates over solar tides). The capture of the moons is then made permanent by dissipative energy loss (for example, gas drag) or planetary growth. But the observed distributions of orbital inclinations, which now include numerous newly discovered moons, cannot be explained using current models. Here we show that irregular satellites are captured in a thin spatial region where orbits are chaotic, and that the resulting orbit is either prograde or retrograde depending on the initial energy. Dissipation then switches these long-lived chaotic orbits into nearby regular (non-chaotic) zones from which escape is impossible. The chaotic layer therefore dictates the final inclinations of the captured moons. We confirm this with three-dimensional Monte Carlo simulations that include nebular drag, and find good agreement with the observed inclination distributions of irregular moons at Jupiter and Saturn. In particular, Saturn has more prograde irregular moons than Jupiter, which we can explain as a result of the chaotic prograde progenitors being more efficiently swept away from Jupiter by its galilean moons.  相似文献   
32.
Borisenko SV  Kordyuk AA  Koitzsch A  Knupfer M  Fink J  Berger H  Lin CT 《Nature》2004,431(7004):1 p following 39
One of the mysteries of modern condensed-matter physics is the nature of the pseudogap state of the superconducting cuprates. Kaminski et al. claim to have observed signatures of time-reversal symmetry breaking in the pseudogap regime in underdoped Bi2Sr2CaCu2O8+delta (Bi2212). Here we argue that the observed circular dichroism is due to the 51 superstructure replica of the electronic bands and therefore cannot be considered as evidence for spontaneous time-reversal symmetry breaking in cuprates.  相似文献   
33.
由于植物引起的紊动作用,含刚性植物床面中悬浮泥沙浓度与无植物裸床相比显著增加,而通过平均流速计算底床切应力的传统泥沙模型无法模拟出该现象。因此,在含植物水流水沙运动物理模型试验的基础上,构建了基于Flow–3D的含刚性沉水植物条件下波浪传播的三维数学模型,模拟了植物影响下波浪动力特征和泥沙悬浮过程,同时从紊动能角度修正希尔兹数,对泥沙模块进行了改进。与实测数据相比,该模型可较精确地模拟出植物引起的整体水流流速减小和局部冠层顶部处的流速增大、水体紊动增强以及紊动能在波周期内出现两个峰值的现象。与原始泥沙模块相比,改进的模型考虑了植物尾流紊动对泥沙运动的影响,可提高含植物床面泥沙悬浮模拟的精度。  相似文献   
34.
35.
ABSTRACT

A second Baltic amber taxon, Retromalisus damzeni, gen. et sp. nov., is discovered in the previously monotypic extinct family Berendtimiridae. The morphological portrait of Berendtimiridae is complemented with the data on the structure of prosternum and abdomen.  相似文献   
36.
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.  相似文献   
37.
Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) has recently been defined based on a highly characteristic constellation of abnormalities observed by magnetic resonance imaging and spectroscopy. LBSL is an autosomal recessive disease, most often manifesting in early childhood. Affected individuals develop slowly progressive cerebellar ataxia, spasticity and dorsal column dysfunction, sometimes with a mild cognitive deficit or decline. We performed linkage mapping with microsatellite markers in LBSL families and found a candidate region on chromosome 1, which we narrowed by means of shared haplotypes. Sequencing of genes in this candidate region uncovered mutations in DARS2, which encodes mitochondrial aspartyl-tRNA synthetase, in affected individuals from all 30 families. Enzyme activities of mutant proteins were decreased. We were surprised to find that activities of mitochondrial complexes from fibroblasts and lymphoblasts derived from affected individuals were normal, as determined by different assays.  相似文献   
38.
39.
Choudhury N  Walizer L  Lisenkov S  Bellaiche L 《Nature》2011,470(7335):513-517
Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry. Geometric frustration gives rise to new fundamental phenomena and is known to yield intriguing effects such as the formation of exotic states like spin ice, spin liquids and spin glasses. It has also led to interesting findings of fractional charge quantization and magnetic monopoles. Mechanisms related to geometric frustration have been proposed to understand the origins of relaxor and multiferroic behaviour, colossal magnetocapacitive coupling, and unusual and novel mechanisms of high-transition-temperature superconductivity. Although geometric frustration has been particularly well studied in magnetic systems in the past 20 years or so, its manifestation in the important class formed by ferroelectric materials (which are compounds with electric rather than magnetic dipoles) is basically unknown. Here we show, using a technique based on first principles, that compositionally graded ferroelectrics possess the characteristic 'fingerprints' associated with geometric frustration. These systems have a highly degenerate energy surface and display critical phenomena. They further reveal exotic orderings with novel stripe phases involving complex spatial organization. These stripes display spiral states, topological defects and curvature. Compositionally graded ferroelectrics can thus be considered the 'missing link' that brings ferroelectrics into the broad category of materials able to exhibit geometric frustration. Our ab initio calculations allow deep microscopic insight into this novel geometrically frustrated system.  相似文献   
40.
In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron's function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property--the preferred stimulus orientation--of a group of neurons in the mouse primary visual cortex. Large-scale electron microscopy of serial thin sections was then used to trace a portion of these neurons' local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号