首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2314篇
  免费   19篇
  国内免费   4篇
系统科学   38篇
丛书文集   2篇
理论与方法论   17篇
现状及发展   1239篇
研究方法   199篇
综合类   809篇
自然研究   33篇
  2018年   40篇
  2017年   28篇
  2016年   38篇
  2015年   24篇
  2014年   30篇
  2013年   41篇
  2012年   84篇
  2011年   124篇
  2010年   64篇
  2009年   25篇
  2008年   115篇
  2007年   94篇
  2006年   110篇
  2005年   105篇
  2004年   92篇
  2003年   80篇
  2002年   79篇
  2001年   61篇
  2000年   65篇
  1999年   36篇
  1994年   27篇
  1990年   20篇
  1989年   17篇
  1988年   15篇
  1987年   15篇
  1986年   15篇
  1985年   23篇
  1984年   22篇
  1982年   19篇
  1981年   18篇
  1980年   38篇
  1979年   26篇
  1978年   21篇
  1977年   26篇
  1976年   25篇
  1975年   23篇
  1974年   15篇
  1973年   36篇
  1972年   38篇
  1971年   45篇
  1970年   38篇
  1969年   41篇
  1968年   30篇
  1967年   44篇
  1966年   40篇
  1965年   28篇
  1964年   24篇
  1963年   20篇
  1961年   19篇
  1955年   14篇
排序方式: 共有2337条查询结果,搜索用时 15 毫秒
121.
We present a system for combining the different types of predictions given by a wide category of mechanical trading rules through statistical learning methods (boosting, and several model averaging methods like Bayesian or simple averaging methods). Statistical learning methods supply better out‐of‐sample results than most of the single moving average rules in the NYSE Composite Index from January 1993 to December 2002. Moreover, using a filter to reduce trading frequency, the filtered boosting model produces a technical strategy which, although it is not able to overcome the returns of the buy‐and‐hold (B&H) strategy during rising periods, it does overcome the B&H during falling periods and is able to absorb a considerable part of falls in the market. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
122.
Poly-ADP-ribose polymerases (PARPs) use NAD+ as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD+ detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD+ pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD+ and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.  相似文献   
123.
The Wnt/beta-catenin/TCF4 pathway plays critical roles in the maintenance of small intestinal epithelium; however, downstream targets of the beta-catenin/TCF4 complex are not extensively characterized. We identified miR-30e as an immediate target activated by the beta-catenin/TCF4 complex. miR-30e was detected in the peri-nuclear region of the intestinal crypt IEC-6 cells. Bioinformatics analysis revealed clustered beta-catenin/TCF4 binding sites within the miR-30e promoter region. This promoter region was cloned into pGL3-control luciferase reporter vector, with the enhancer region removed. Transfection of pCMV-SPORT6-beta-catenin expression vector dose-dependently increased luciferase activity, and co-transfection of pCMV-SPORT6-TCF4 expression vector further enhanced the promoter activity. Dexamethasone-induced IEC-6 cells differentiation caused a 2.5-fold increase in miR-30e expression, and upon beta-catenin siRNA transfection, miR-30e increased 1.3-fold. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed the binding between beta-catenin/TCF4 complexes from IEC-6 nuclear extracts and the putative sequences in the miR-30e promoter. These results demonstrate that beta-catenin/TCF4 transactivates miR-30e during intestinal cell differentiation.  相似文献   
124.
125.
P2X4 and P2X7 receptors are ATP-gated ion channels that are co-expressed in alveolar epithelial type I cells. Both receptors are localized to the plasma membrane and partly associated with lipid rafts. Here we report on our study in an alveolar epithelial cell line of the molecular organization of P2X7R and P2X4R receptors and the effect of their knockdown. Native gel electrophoresis reveals three P2X7R complexes of ~430, ~580 and ~760 kDa. The latter two correspond exactly in size to signals of Cav-1, the structural protein of caveolae. Interestingly knockdown of P2rx7 affects protein levels, the intracellular distribution and the supramolecular organization of Cav-1 as well as of P2X4R, which is mainly detected in a complex of ~430 kDa. Our data suggest upregulation of P2X4R as a compensatory mechanism of P2X7R depletion.  相似文献   
126.
Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.  相似文献   
127.
128.
The genetic and evolutionary basis of colour variation in vertebrates   总被引:1,自引:0,他引:1  
Variation in pigmentation is one of the most conspicuous phenotypic traits in vertebrates. Although mammals show less variation in body pigmentation than other vertebrate groups, the genetics of colour determination and variation is best understood for them. More than 150 genes have been identified that influence pigmentation, and in many cases, the cause for variation in pigmentation has been identified down to the underlying nucleotide changes. These studies show that while some genes are often responsible for deviating pigmentation, similar or almost identical phenotypes even in the same species may be due to mutations in different genes. In this review we will first discuss the current knowledge about the genes and their functions underlying the biochemical pathways that determine pigmentation and then give examples where the mutations responsible for colour variation have been determined. Finally, we will discuss potential evolutionary causes for and consequences of differences in pigmentation between individuals.  相似文献   
129.
Caspases are the most important effectors of apoptosis, the major form of programmed cell death (PCD) in multicellular organisms. This is best reflected by the appearance of serious development defects in mice deficient for caspase-8, -9, and -3. Meanwhile, caspase-independent PCD, mediated by other proteases or signaling components has been described in numerous publications. Although we do not doubt that such cell death exists, we propose that it has evolved later during evolution and is most likely not designed to execute, but to amplify and speed-up caspase-dependent cell death. This review shall provide evidence for such a concept.  相似文献   
130.
In the present study we demonstrated that neurotoxin MPP+-induced DNA damage is followed by ataxia telangiectasia muted (ATM) activation either in cerebellar granule cells (CGC) or in B65 cell line. In CGC, the selective ATM inhibitor KU-55933 showed neuroprotective effects against MPP+-induced neuronal cell loss and apoptosis, lending support to the key role of ATM in experimental models of Parkinson’s disease. Likewise, we showed that knockdown of ATM levels in neuroblastoma B65 cells using an ATM-specific siRNA attenuates the phosphorylation of retinoblastoma protein without affecting other cell-cycle proteins involved in the G0/G1 cell-cycle phase. Moreover, we demonstrated DNA damage, in human brain samples of PD patients. These findings support a model in which MPP+ leads to ATM activation with a subsequent DNA damage response and activation of pRb. Therefore, this study demonstrates a new link between DNA damage by MPP+ and cell-cycle re-entry through retinoblastoma protein phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号