首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17297篇
  免费   26篇
  国内免费   67篇
系统科学   123篇
丛书文集   288篇
教育与普及   43篇
理论与方法论   63篇
现状及发展   7408篇
研究方法   909篇
综合类   8293篇
自然研究   263篇
  2013年   113篇
  2012年   300篇
  2011年   568篇
  2010年   106篇
  2009年   100篇
  2008年   317篇
  2007年   361篇
  2006年   376篇
  2005年   378篇
  2004年   380篇
  2003年   328篇
  2002年   320篇
  2001年   609篇
  2000年   571篇
  1999年   388篇
  1992年   325篇
  1991年   264篇
  1990年   279篇
  1989年   253篇
  1988年   235篇
  1987年   280篇
  1986年   291篇
  1985年   319篇
  1984年   280篇
  1983年   222篇
  1982年   182篇
  1981年   195篇
  1980年   249篇
  1979年   566篇
  1978年   433篇
  1977年   425篇
  1976年   314篇
  1975年   349篇
  1974年   515篇
  1973年   437篇
  1972年   428篇
  1971年   519篇
  1970年   688篇
  1969年   484篇
  1968年   399篇
  1967年   487篇
  1966年   398篇
  1965年   282篇
  1959年   163篇
  1958年   268篇
  1957年   210篇
  1956年   181篇
  1955年   145篇
  1954年   152篇
  1948年   127篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
291.
Based on the classification of bacterial lipolytic enzymes, family I.3 lipase is a member of the large group of Gram-negative bacterial true lipases. This lipase family is distinguished from other families not only by the amino acid sequence, but also by the secretion mechanism. Lipases of family I.3 are secreted via the well-known type I secretion system. Like most of proteins secreted via this system, family I.3 lipases are composed of two domains with distinct yet related functions. Recent years have seen an increasing amount of research on this lipase family, in terms of isolation, secretion mechanism, as well as biochemical and biophysical studies. This review describes our current knowledge on the structure-function relationships of family I.3 lipase, with an emphasis on its secretion mechanism. Received 18 April 2006; received after revision 3 July 2006; accepted 24 August 2006  相似文献   
292.
The locations and properties of common deletion variants in the human genome are largely unknown. We describe a systematic method for using dense SNP genotype data to discover deletions and its application to data from the International HapMap Consortium to characterize and catalogue segregating deletion variants across the human genome. We identified 541 deletion variants (94% novel) ranging from 1 kb to 745 kb in size; 278 of these variants were observed in multiple, unrelated individuals, 120 in the homozygous state. The coding exons of ten expressed genes were found to be commonly deleted, including multiple genes with roles in sex steroid metabolism, olfaction and drug response. These common deletion polymorphisms typically represent ancestral mutations that are in linkage disequilibrium with nearby SNPs, meaning that their association to disease can often be evaluated in the course of SNP-based whole-genome association studies.  相似文献   
293.
294.
The thyroid hormone plays a fundamental role in the development, growth, and metabolic homeostasis in all vertebrates by affecting the expression of different sets of genes. A group of thioredoxin fold-containing selenoproteins known as deiodinases control thyroid hormone action by activating or inactivating the precursor molecule thyroxine that is secreted by the thyroid gland. These pathways ensure regulation of the availability of the biologically active molecule T3, which occurs in a time-and tissue-specific fashion. In addition, because cells and plasma are in equilibrium and deiodination affects central thyroid hormone regulation, these local deiodinase-mediated events can also affect systemic thyroid hormone economy, such as in the case of non-thyroidal illness. Heightened interest in the field has been generated following the discovery that the deiodinases can be a component in both the Sonic hedgehog signaling pathway and the TGR-5 signaling cascade, a G-protein-coupled receptor for bile acids. These new mechanisms involved in deiodinase regulation indicate that local thyroid hormone activation and inactivation play a much broader role than previously thought. Received 29 August 2007; received after revision 11 October 2007; accepted 16 October 2007  相似文献   
295.
Human eosinophil cationic protein (ECP)/ ribonuclease 3 (RNase 3) is a protein secreted from the secondary granules of activated eosinophils. Specific properties of ECP contribute to its cytotoxic activities associated with defense mechanisms. In this work the ECP cytotoxic activity on eukaryotic cell lines is analyzed. The ECP effects begin with its binding and aggregation to the cell surface, altering the cell membrane permeability and modifying the cell ionic equilibrium. No internalization of the protein is observed. These signals induce cell-specific morphological and biochemical changes such as chromatin condensation, reversion of membrane asymmetry, reactive oxygen species production and activation of caspase-3-like activity and, eventually, cell death. However, the ribonuclease activity component of ECP is not involved in this process as no RNA degradation is observed. In summary, the cytotoxic effect of ECP is attained through a mechanism different from that of other cytotoxic RNases and may be related with the ECP accumulation associated with the inflammatory processes, in which eosinophils are present. Received 26 October 2007; accepted 23 November 2007  相似文献   
296.
Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved. Received 7 November 2007; received after revision 19 December 2007; accepted 21 December 2007 O. Cohausz, C. Blenn: These two authors contributed equally to this work.  相似文献   
297.
MurNAc etherases cleave the uniqued-lactyl ether bond of the bacterial cell wall sugar N-acetylmuramic acid (MurNAc). Members of this newly discovered family of enzymes are widely distributed among bacteria and are required to utilize peptidoglycan fragments obtained either from the environment or from the endogenous cell wall (i.e., recycling). MurNAc etherases are strictly dependent on the substrate MurNAc possessing a free reducing end and a phosphoryl group at C6. They carry a single conserved sugar phosphate isomerase/sugar phosphate- binding (SIS) domain to which MurNAc 6-phosphate is bound. Two subunits form an enzymatically active homodimer that structurally resembles the isomerase module of the double-SIS domain protein GlmS, the glucosamine 6-phosphate synthase. Structural comparison provides insights into the two-step lyase-type reaction mechanism of MurNAc etherases: β-elimination of the D-lactic acid substituent proceeds through a 2,3-unsaturated sugar intermediate to which water is subsequently added. Received 31 August 2007; received after revision 12 October 2007; accepted 1 November 2007  相似文献   
298.
299.
Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid. S. Oddi, F. Fezza: These authors contributed equally to the study.  相似文献   
300.
The urokinase receptor and integrins in cancer progression   总被引:2,自引:0,他引:2  
Enhanced levels of expression of urokinase receptor (uPAR) and certain integrins have been linked to cancer cell progression. This has classically been attributed to matrix degradation via the activation of the urokinase (uPA)/plasmin system and modulation of cell motility and survival through integrin engagement. More recently, uPAR has been shown to play multiple roles independent of protease activity. Specifically, uPAR has been shown to be intimately involved in the regulation of cell adhesion, migration and proliferation in part through interactions with other membrane partners, including integrins. The goal of this review is to summarize recent insights in the function of uPAR/integrin interactions, to provide a framework for understanding the importance of these interactions in the context of cancer, and to highlight its potential as a target for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号