首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25121篇
  免费   78篇
  国内免费   115篇
系统科学   118篇
丛书文集   168篇
教育与普及   70篇
理论与方法论   65篇
现状及发展   10523篇
研究方法   1157篇
综合类   12858篇
自然研究   355篇
  2013年   167篇
  2012年   364篇
  2011年   714篇
  2009年   158篇
  2008年   458篇
  2007年   539篇
  2006年   514篇
  2005年   529篇
  2004年   485篇
  2003年   492篇
  2002年   462篇
  2001年   934篇
  2000年   923篇
  1999年   594篇
  1994年   338篇
  1992年   555篇
  1991年   424篇
  1990年   484篇
  1989年   430篇
  1988年   392篇
  1987年   442篇
  1986年   457篇
  1985年   587篇
  1984年   427篇
  1983年   383篇
  1982年   345篇
  1981年   332篇
  1980年   332篇
  1979年   842篇
  1978年   631篇
  1977年   580篇
  1976年   499篇
  1975年   514篇
  1974年   601篇
  1973年   531篇
  1972年   530篇
  1971年   620篇
  1970年   831篇
  1969年   623篇
  1968年   628篇
  1967年   574篇
  1966年   573篇
  1965年   410篇
  1959年   212篇
  1958年   348篇
  1957年   225篇
  1956年   207篇
  1955年   178篇
  1954年   194篇
  1948年   169篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
311.
More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.  相似文献   
312.
On the design and analysis of gene expression studies in human populations   总被引:2,自引:0,他引:2  
Akey JM  Biswas S  Leek JT  Storey JD 《Nature genetics》2007,39(7):807-8; author reply 808-9
  相似文献   
313.
Evolutionary conservation in myoblast fusion   总被引:2,自引:0,他引:2  
Krauss RS 《Nature genetics》2007,39(6):704-705
  相似文献   
314.
Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.  相似文献   
315.
Peutz-Jeghers syndrome: clinicopathology and molecular alterations   总被引:5,自引:0,他引:5  
Peutz-Jeghers syndrome (PJS, OMIM 175200) is an unusual inherited intestinal polyposis syndrome associated with distinct peri-oral blue/black freckling [1–9]. Variable penetrance and clinical heterogeneity make it difficult to determine the exact frequency of PJS [4]. PJS is a cancer predisposition syndrome. Affected individuals are at high risk for intestinal and extra-intestinal cancers. In 1997, linkage studies mapped PJS to chromosome 19p [10, 11], and subsequently a serine/threonine kinase gene defect (LKB1) was noted in a majority of PJS cases [12, 13]. A phenotypically similar syndrome has been produced in an LKB1 mouse knockout model [14–18]. Several PJS kindred without LKB1 mutations have been described, suggesting other PJS loci [19–22]. The management of PJS is complex and evolving. New endoscopic technologies may improve management of intestinal polyposis. Identification of specific genetic mutations and their targets will more accurately assess the clinical course, and help gage the magnitude of cancer risk for affected individuals. Received 20 February 2006; received after revision 5 May 2006; accepted 15 June 2006  相似文献   
316.
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported. Received 6 October 2005; received after revision 14 December 2005; accepted 27 December 2005 †These authors contributed equally to this work.  相似文献   
317.
Huntington’s disease (HD) is a neurodegenerative disorder that usually starts in middle age and is characterized by involuntary movements (chorea), personality changes and dementia, leading to death within 10–20 years. The defective gene in HD contains a trinucleotide CAG repeat expansion within its coding region that expresses a polyglutamine repeat in the protein huntingtin. Together with the characteristic formation of aggregates in HD, aberrant protein interactions and several post-translational modifications affect huntingtin during disease progression and lead to the dysfunction and death of selective neurons in the brains of patients. The exact molecular mechanisms by which mutant huntingtin induces cell death are not completely understood but may involve the gain of new toxic functions and the loss of the beneficial properties of huntingtin. This review focuses on the cellular functions in which huntingtin is involved and how a better understanding of pathogenic pathways can lead to new therapeutic approaches. Received 24 May 2006; received after revision 5 July 2006; accepted 23 August 2006  相似文献   
318.
Nodal signals pattern vertebrate embryos   总被引:4,自引:0,他引:4  
Vertebrate embryonic patterning requires several conserved inductive signals–including Nodal, Bmp, Wnt and Fgf signals. Nodal, which is a member of the transforming growth factor β (TGFβ) superfamily, activates a signal transduction pathway that is similar to that of other TGFβ members. Nodal genes, which have been identified in numerous vertebrate species, are expressed in specific cell types and tissues during embryonic development. Nodal signal transduction has been shown to play a pivotal role in inducing and patterning mesoderm and endoderm, and in regulating neurogenesis and left-right axis asymmetry. Antagonists, which act at different steps in the Nodal signal transduction pathway, have been shown to tightly modulate the inductive activity of Nodal. Received 20 October 2005; received after revision 15 November 2005; accepted 25 November 2005  相似文献   
319.
Increasing evidence implies altered signaling through the neurotrophic receptor tyrosine kinase TrkB in promoting tumor formation and metastasis. TrkB, sometimes in conjunction with its primary ligand BDNF, is often overexpressed in a variety of human cancers, ranging from neuroblastomas to pancreatic ductal adenocarcinomas, in which it may allow tumor expansion and contribute to resistance to anti-tumor agents. In vitro, TrkB acts as a potent suppressor of anoikis (detachment-induced apoptosis), which is associated with the acquisition of an aggressive tumorigenic and metastatic phenotype in vivo. In view of its predicted contribution to tumorigenicity and metastasis in humans, TrkB corresponds to a potential drug target, and preclinical models have already been established. The encouraging results of pharmacological Trk inhibitors in tumor xenograft models suggest that TrkB inhibition may represent a promising novel anti-tumor therapeutic strategy. This hypothesis is currently being evaluated in clinical trials. Here, we will discuss the latest developments on TrkB in these contexts as well as highlight some critical questions that remain to be addressed for evaluating TrkB as a therapeutic target in cancer. Received 12 October 2005; received after revision 19 December 2005; accepted 11 January 2006  相似文献   
320.
Supercoiled DNA folded by non-histone proteins in cultured mammalian cells.   总被引:2,自引:0,他引:2  
T Ide  M Nakane  K Anzai  T Ando 《Nature》1975,258(5534):445-447
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号