首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47011篇
  免费   363篇
  国内免费   650篇
系统科学   470篇
丛书文集   768篇
教育与普及   155篇
理论与方法论   186篇
现状及发展   18823篇
研究方法   1612篇
综合类   25466篇
自然研究   544篇
  2014年   452篇
  2013年   670篇
  2012年   928篇
  2011年   1482篇
  2010年   647篇
  2009年   665篇
  2008年   1255篇
  2007年   1291篇
  2006年   1274篇
  2005年   1149篇
  2004年   1033篇
  2003年   957篇
  2002年   982篇
  2001年   1528篇
  2000年   1408篇
  1999年   957篇
  1994年   445篇
  1992年   824篇
  1991年   612篇
  1990年   732篇
  1989年   684篇
  1988年   638篇
  1987年   723篇
  1986年   659篇
  1985年   835篇
  1984年   651篇
  1983年   542篇
  1982年   510篇
  1981年   519篇
  1980年   601篇
  1979年   1308篇
  1978年   1057篇
  1977年   1031篇
  1976年   852篇
  1975年   887篇
  1974年   1171篇
  1973年   1045篇
  1972年   1054篇
  1971年   1146篇
  1970年   1505篇
  1969年   1142篇
  1968年   1143篇
  1967年   1105篇
  1966年   972篇
  1965年   692篇
  1959年   375篇
  1958年   645篇
  1957年   417篇
  1956年   385篇
  1955年   365篇
排序方式: 共有10000条查询结果,搜索用时 6 毫秒
961.
This paper evaluates the performance of conditional variance models using high‐frequency data of the National Stock Index (S&P CNX NIFTY) and attempts to determine the optimal sampling frequency for the best daily volatility forecast. A linear combination of the realized volatilities calculated at two different frequencies is used as benchmark to evaluate the volatility forecasting ability of the conditional variance models (GARCH (1, 1)) at different sampling frequencies. From the analysis, it is found that sampling at 30 minutes gives the best forecast for daily volatility. The forecasting ability of these models is deteriorated, however, by the non‐normal property of mean adjusted returns, which is an assumption in conditional variance models. Nevertheless, the optimum frequency remained the same even in the case of different models (EGARCH and PARCH) and different error distribution (generalized error distribution, GED) where the error is reduced to a certain extent by incorporating the asymmetric effect on volatility. Our analysis also suggests that GARCH models with GED innovations or EGRACH and PARCH models would give better estimates of volatility with lower forecast error estimates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
962.
Experimental philosophy is often regarded as a category mistake. Even those who reject that view typically see it as irrelevant to standard philosophical projects. We argue that neither of these claims can be sustained and illustrate our view with a sketch of the rich interconnections with philosophy of science.  相似文献   
963.
从力学原理、设计原理、整机结构、关键零部件的设计和工作程序,系统地介绍了自调式镦压挤胀复合液压机.由于压机设计了顶出缸对下活动横梁调节限位结构,回程拉杆对上镦压横梁的复位结构及镦压缸和气液储能器之间的连通协调结构,这不仅使该液压机结构紧凑,同时节省了上镦压横梁的回程液压缸、下活动横梁的镦压缸,并简化了上凸模与上镦压模分设的液压系统,而且解决了直齿圆柱齿轮在塑性成形过程中齿顶难以充满、齿根易出现微裂纹,以及成形压力过大和模具寿命过低的问题.  相似文献   
964.
The exposure of phosphatidylserine (PS) at the cell surface plays a critical role in blood coagulation and serves as a macrophage recognition moiety for the engulfment of apoptotic cells. Previous observations have shown that a high extracellular [K+] and selective K+ channel blockers inhibit PS exposure in platelets and erythrocytes. Here we show that the rate of PS exposure in erythrocytes decreases by ~50% when the intracellular [K+] increases from 0 to physiological concentrations. Using resealed erythrocyte membranes, we further show that lipid scrambling is inducible by raising the intracellular [Ca2+] and that K+ ions have a direct inhibitory effect on this process. Lipid scrambling in resealed ghosts occurs in the absence of cell shrinkage and microvesicle formation, processes that are generally attributed to Ca2+-induced lipid scrambling in intact erythrocytes. Thus, opening of Ca2+-sensitive K+ channels causes loss of intracellular K+ that results in reduced intrinsic inhibitory effect of these ions on scramblase activity. Received 11 September 2008; received after revision 17 October 2008; accepted 27 October 2008  相似文献   
965.
Indenone KR-62776 acts as an agonist of PPARγ without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPARγ, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPARγ is one of the key factors explaining the biological responses of the ligands. Received 04 March 2009; received after revision 13 March 2009; accepted 17 March 2009  相似文献   
966.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   
967.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
968.
969.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
970.
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121–124, 2008); Prochnow et al. (Nature 445:447–451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116–119, 2008); Furukawa et al. (EMBO J 28:440–451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号