首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17764篇
  免费   58篇
  国内免费   87篇
系统科学   74篇
丛书文集   121篇
教育与普及   45篇
理论与方法论   42篇
现状及发展   7471篇
研究方法   869篇
综合类   9088篇
自然研究   199篇
  2013年   145篇
  2012年   281篇
  2011年   453篇
  2009年   115篇
  2008年   346篇
  2007年   394篇
  2006年   394篇
  2005年   383篇
  2004年   339篇
  2003年   357篇
  2002年   313篇
  2001年   689篇
  2000年   676篇
  1999年   414篇
  1994年   312篇
  1992年   385篇
  1991年   275篇
  1990年   333篇
  1989年   293篇
  1988年   256篇
  1987年   315篇
  1986年   314篇
  1985年   389篇
  1984年   281篇
  1983年   264篇
  1982年   247篇
  1981年   226篇
  1980年   218篇
  1979年   598篇
  1978年   436篇
  1977年   402篇
  1976年   351篇
  1975年   359篇
  1974年   435篇
  1973年   393篇
  1972年   352篇
  1971年   424篇
  1970年   569篇
  1969年   438篇
  1968年   448篇
  1967年   414篇
  1966年   390篇
  1965年   288篇
  1959年   145篇
  1958年   242篇
  1957年   155篇
  1956年   154篇
  1955年   138篇
  1954年   140篇
  1948年   124篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
292.
293.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
294.
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of cytidine deaminases has emerged as an intensively studied field as a result of their important biological functions. These enzymes are involved in lipid metabolism, antibody diversification, and the inhibition of retrotransposons, retroviruses, and some DNA viruses. The APOBEC proteins function in these roles by deaminating single-stranded (ss) DNA or RNA. There are two high-resolution crystal structures available for the APOBEC family, Apo2 and the C-terminal catalytic domain (CD2) of Apo3G or Apo3G-CD2 [Holden et al. (Nature 456:121–124, 2008); Prochnow et al. (Nature 445:447–451, 2007)]. Additionally, the structure of Apo3G-CD2 has also been determined using NMR [Chen et al. (Nature 452:116–119, 2008); Furukawa et al. (EMBO J 28:440–451, 2009); Harjes et al. (J Mol Biol, 2009)]. A detailed structural analysis of the APOBEC proteins and a comparison to other zinc-coordinating deaminases can facilitate our understanding of how APOBEC proteins bind nucleic acids, recognize substrates, and form oligomers. Here, we review the recent development of structural and functional studies that apply to Apo3G as well as the APOBEC deaminase family.  相似文献   
295.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   
296.
The trefoil factor family (TFF) comprises a group of small peptides which are highly expressed in tissues containing mucus-producing cells – especially in the mucosa lining the gastrointestinal tract. The peptides seem crucial for epithelial restitution and may work via other pathways than the conventional factors involved in restitution. In vitro studies have shown that the TFFs promote restitution using multiple mechanisms. The peptides also have other functionalities including interactions with the immune system. Moreover, therapeutic effects of the TFFs have been shown in several animal models of gastrointestinal damage. Still it is not clear which of their in vitro properties are involved in the in vivo mode of action. This review describes the TFF family with emphasis on their biological properties and involvement in mucosal protection and repair. Received 10 October 2008; received after revision 07 November 2008; accepted 10 November 2008  相似文献   
297.
298.
In 1985, more than thirty geomorphologists, planetary scientists, and remote sensing specialists gathered at a conference center in Oracle, Arizona, to discuss an emerging area of research that they called “mega-geomorphology.” Building on a conference of the same name held in London in 1981, they argued that new techniques of remote sensing and insights emerging from the study of extraterrestrial planets had created opportunities for geomorphology to broaden its spatial and temporal scope. This new approach was, however, neither unproblematic nor uncontested. In the discussions around mega-geomorphology that took place in the mid-1980s, the perceived conflict between the use of remote-sensing techniques to observe phenomena on vast spatial scales, on one hand, and the disciplinary centrality of fieldwork and field experience to geomorphology, on the other, was a recurrent theme. In response, mega-geomorphologists attempted to re-situate fieldwork and re-narrate disciplinary histories in such a way as to make remote sensing and planetary science not only compatible with geomorphological traditions but also means of revitalizing them. Only partially successful, these attempts reveal that the process of adopting a planetary perspective in geomorphology, as in other earth sciences, was neither straightforward nor inevitable. They also show how the field and fieldwork could remain central to geomorphology while also being extensively revised in light of new technical possibilities and theoretical frameworks.  相似文献   
299.
300.
A total of 3109 crustaceans belonging to 50 taxa distributed in 42 families were found in 117 analysed stomachs of flying gurnard (Dactylopterus volitans). Samples were obtained in April 2008 by the R/V Gyre using a bottom trawl towed in 12 stations at 14–100 m depth on the continental shelf of the Campos Basin, Brazil. The carcinofauna was analysed and the order Calanoida (Copepoda) found to be the most important item in terms of relative abundance and frequency of occurrence, followed by the order Amphipoda (Peracarida), the infraorder Brachyura (Decapoda), the order Stomatopoda and the subclass Myodocopa (Ostracoda). In the order Calanoida, the species Pontellopsis cf. villosa (Pontellidae) represented 98.04% of total crustacean abundance. The diet of Dactylopterus volitans varied according to fish size, with higher diversity of Crustacea at smaller size classes, decreasing in larger fishes. A similar pattern regarding depth was obtained, with greater diversity of taxa in gurnard stomachs caught at shallower depths. Flying gurnard is considered a generalized carnivore of invertebrates, eating mobile macrobenthic organisms, such as crustaceans, and its diet varies with its life stage, without any specific group as its main food source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号