首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5776篇
  免费   58篇
  国内免费   74篇
系统科学   97篇
丛书文集   119篇
教育与普及   174篇
理论与方法论   11篇
现状及发展   581篇
研究方法   991篇
综合类   3929篇
自然研究   6篇
  2018年   8篇
  2017年   22篇
  2016年   18篇
  2015年   13篇
  2014年   27篇
  2013年   18篇
  2012年   465篇
  2011年   544篇
  2010年   126篇
  2009年   48篇
  2008年   427篇
  2007年   439篇
  2006年   451篇
  2005年   474篇
  2004年   411篇
  2003年   417篇
  2002年   355篇
  2001年   283篇
  2000年   411篇
  1999年   102篇
  1998年   15篇
  1997年   15篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   24篇
  1992年   24篇
  1991年   19篇
  1990年   30篇
  1989年   24篇
  1988年   12篇
  1987年   26篇
  1986年   20篇
  1985年   21篇
  1984年   30篇
  1983年   25篇
  1982年   22篇
  1981年   19篇
  1980年   9篇
  1979年   11篇
  1971年   10篇
  1970年   13篇
  1966年   15篇
  1959年   48篇
  1958年   101篇
  1957年   54篇
  1956年   46篇
  1955年   51篇
  1954年   55篇
  1948年   24篇
排序方式: 共有5908条查询结果,搜索用时 351 毫秒
51.
Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors.  相似文献   
52.
53.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   
54.
Human CtIP promotes DNA end resection   总被引:3,自引:0,他引:3  
Sartori AA  Lukas C  Coates J  Mistrik M  Fu S  Bartek J  Baer R  Lukas J  Jackson SP 《Nature》2007,450(7169):509-514
In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.  相似文献   
55.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
56.
57.
58.
Sato T  Mushiake S  Kato Y  Sato K  Sato M  Takeda N  Ozono K  Miki K  Kubo Y  Tsuji A  Harada R  Harada A 《Nature》2007,448(7151):366-369
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.  相似文献   
59.
Progressive field-state collapse and quantum non-demolition photon counting   总被引:1,自引:0,他引:1  
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号