首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   0篇
系统科学   5篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   42篇
研究方法   26篇
综合类   58篇
自然研究   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   5篇
  2013年   3篇
  2012年   14篇
  2011年   13篇
  2010年   9篇
  2009年   1篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2000年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有137条查询结果,搜索用时 31 毫秒
131.
Despite the increase in women entering the professional work force, there are still few in systems. Yet women are nurtured as systems thinkers and rely, routinely, on their holistic understanding of complex relationships to resolve dilemmas. Once they have acquired formal systems skills to complement this “natural” systems thinking, women have a powerful array of techniques to use to their advantage at work, in politics, and in academia. Since systems can benefit from the participation of women, and reciprocally, women can benefit from applying systems skills, we should encourage more women into systems and offer them support as colleagues.  相似文献   
132.
Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.  相似文献   
133.
The vasculature of solid tumours is morphologically aberrant and characterized by dilated and fragile vessels, intensive vessel sprouting and loss of hierarchical architecture. Constant vessel remodelling leads to spontaneous haemorrhages and increased interstitial fluid pressure in the tumour environment. Tumour-related angiogenesis supports tumour growth and is also a major obstacle for successful immune therapy as it prevents migration of immune effector cells into established tumour parenchyma. The molecular mechanisms for these angiogenic alterations are largely unknown. Here we identify regulator of G-protein signalling 5 (Rgs5) as a master gene responsible for the abnormal tumour vascular morphology in mice. Loss of Rgs5 results in pericyte maturation, vascular normalization and consequent marked reductions in tumour hypoxia and vessel leakiness. These vascular and intratumoral changes enhance influx of immune effector cells into tumour parenchyma and markedly prolong survival of tumour-bearing mice. This is the first demonstration, to our knowledge, of reduced tumour angiogenesis and improved immune therapeutic outcome on loss of a vascular gene function and establishes a previously unrecognized role of G-protein signalling in tumour angiogenesis.  相似文献   
134.
Turnbaugh PJ  Ley RE  Mahowald MA  Magrini V  Mardis ER  Gordon JI 《Nature》2006,444(7122):1027-1031
The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.  相似文献   
135.
Gilboa L  Lehmann R 《Nature》2006,443(7107):97-100
The ability of organs such as the liver or the lymphoid system to maintain their original size or regain it after injury is well documented. However, little is known about how these organs sense that equilibrium is breached, and how they cease changing when homeostasis is reached. Similarly, it remains unclear how, during normal development, different cell types within an organ coordinate their growth. Here we show that during gonad development in the fruitfly Drosophila melanogaster the proliferation of primordial germ cells (PGCs) and survival of the somatic intermingled cells (ICs) that contact them are coordinated by means of a feedback mechanism composed of a positive signal and a negative signal. PGCs express the EGF receptor (EGFR) ligand Spitz, which is required for IC survival. In turn, ICs inhibit PGC proliferation. Thus, homeostasis and coordination of growth between soma and germ line in the larval ovary is achieved by using a sensor of PGC numbers (EGFR-mediated survival of ICs) coupled to a correction mechanism inhibiting PGC proliferation. This feedback loop ensures that sufficient numbers of PGCs exist to fill all the stem-cell niches that form at the end of larval development. We propose that similar feedback mechanisms might be generally used for coordinated growth, regeneration and homeostasis.  相似文献   
136.
Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.  相似文献   
137.
Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they develop into the exo-erythrocytic forms (EEFs). Immunization with irradiated sporozoites (IrSp) leads to robust protection against malaria infection in rodents, monkeys and humans by eliciting antibodies to circumsporozoite protein (CS) that inhibit sporozoite infectivity, and T cells that destroy the EEFs. To study the role of non-CS antigens in protection, we produced CS transgenic mice that were tolerant to CS T-cell epitopes. Here we show that in the absence of T-cell-dependent immune responses to CS, protection induced by immunization with two doses of IrSp was greatly reduced. Thus, although hundreds of other Plasmodium genes are expressed in sporozoites and EEFs, CS is a dominant protective antigen. Nevertheless, sterile immunity could be obtained by immunization of CS transgenics with three doses of IrSp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号