首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   3篇
  国内免费   7篇
理论与方法论   2篇
现状及发展   32篇
研究方法   23篇
综合类   105篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   20篇
  2011年   21篇
  2010年   5篇
  2008年   6篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   14篇
  2003年   8篇
  2002年   7篇
  1991年   1篇
  1989年   3篇
  1985年   1篇
  1984年   2篇
  1974年   1篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有162条查询结果,搜索用时 218 毫秒
91.
92.
Ritz T  Thalau P  Phillips JB  Wiltschko R  Wiltschko W 《Nature》2004,429(6988):177-180
Migratory birds are known to use the geomagnetic field as a source of compass information. There are two competing hypotheses for the primary process underlying the avian magnetic compass, one involving magnetite, the other a magnetically sensitive chemical reaction. Here we show that oscillating magnetic fields disrupt the magnetic orientation behaviour of migratory birds. Robins were disoriented when exposed to a vertically aligned broadband (0.1-10 MHz) or a single-frequency (7-MHz) field in addition to the geomagnetic field. Moreover, in the 7-MHz oscillating field, this effect depended on the angle between the oscillating and the geomagnetic fields. The birds exhibited seasonally appropriate migratory orientation when the oscillating field was parallel to the geomagnetic field, but were disoriented when it was presented at a 24 degrees or 48 degrees angle. These results are consistent with a resonance effect on singlet-triplet transitions and suggest a magnetic compass based on a radical-pair mechanism.  相似文献   
93.
94.
Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life. In the mammalian hippocampus, a region important for spatial and episodic memory, thousands of new granule cells are produced per day, with the exact number depending on environmental conditions and physical exercise. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca2+ channels can generate isolated Ca2+ spikes and boost fast Na+ action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.  相似文献   
95.
Hauert C  Doebeli M 《Nature》2004,428(6983):643-646
Understanding the emergence of cooperation is a fundamental problem in evolutionary biology. Evolutionary game theory has become a powerful framework with which to investigate this problem. Two simple games have attracted most attention in theoretical and experimental studies: the Prisoner's Dilemma and the snowdrift game (also known as the hawk-dove or chicken game). In the Prisoner's Dilemma, the non-cooperative state is evolutionarily stable, which has inspired numerous investigations of suitable extensions that enable cooperative behaviour to persist. In particular, on the basis of spatial extensions of the Prisoner's Dilemma, it is widely accepted that spatial structure promotes the evolution of cooperation. Here we show that no such general predictions can be made for the effects of spatial structure in the snowdrift game. In unstructured snowdrift games, intermediate levels of cooperation persist. Unexpectedly, spatial structure reduces the proportion of cooperators for a wide range of parameters. In particular, spatial structure eliminates cooperation if the cost-to-benefit ratio of cooperation is high. Our results caution against the common belief that spatial structure is necessarily beneficial for cooperative behaviour.  相似文献   
96.
Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.  相似文献   
97.
Infantile myopathies with diaphragmatic paralysis are genetically heterogeneous, and clinical symptoms do not assist in differentiating between them. We used phased haplotype analysis with subsequent targeted exome sequencing to identify MEGF10 mutations in a previously unidentified type of infantile myopathy with diaphragmatic weakness, areflexia, respiratory distress and dysphagia. MEGF10 is highly expressed in activated satellite cells and regulates their proliferation as well as their differentiation and fusion into multinucleated myofibers, which are greatly reduced in muscle from individuals with early onset myopathy, areflexia, respiratory distress and dysphagia.  相似文献   
98.
Loss of the de novo DNA methyltransferases Dnmt3a and Dnmt3b in embryonic stem cells obstructs differentiation; however, the role of these enzymes in somatic stem cells is largely unknown. Using conditional ablation, we show that Dnmt3a loss progressively impairs hematopoietic stem cell (HSC) differentiation over serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Dnmt3a-null HSCs show both increased and decreased methylation at distinct loci, including substantial CpG island hypermethylation. Dnmt3a-null HSCs upregulate HSC multipotency genes and downregulate differentiation factors, and their progeny exhibit global hypomethylation and incomplete repression of HSC-specific genes. These data establish Dnmt3a as a critical participant in the epigenetic silencing of HSC regulatory genes, thereby enabling efficient differentiation.  相似文献   
99.
We have conducted the first meta-analyses for nonsyndromic cleft lip with or without cleft palate (NSCL/P) using data from the two largest genome-wide association studies published to date. We confirmed associations with all previously identified loci and identified six additional susceptibility regions (1p36, 2p21, 3p11.1, 8q21.3, 13q31.1 and 15q22). Analysis of phenotypic variability identified the first specific genetic risk factor for NSCLP (nonsyndromic cleft lip plus palate) (rs8001641; P(NSCLP) = 6.51 × 10(-11); homozygote relative risk = 2.41, 95% confidence interval (CI) 1.84-3.16).  相似文献   
100.
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号