首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   0篇
教育与普及   3篇
理论与方法论   2篇
现状及发展   11篇
研究方法   33篇
综合类   213篇
  2012年   10篇
  2011年   20篇
  2010年   2篇
  2009年   1篇
  2008年   13篇
  2007年   16篇
  2006年   14篇
  2005年   18篇
  2004年   15篇
  2003年   20篇
  2002年   15篇
  2001年   12篇
  2000年   22篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   7篇
  1970年   12篇
  1960年   2篇
  1959年   4篇
  1958年   9篇
  1957年   6篇
  1956年   6篇
  1955年   4篇
  1954年   4篇
  1948年   12篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
11.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   
12.
Hayashi T  Carthew RW 《Nature》2004,431(7009):647-652
Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics.  相似文献   
13.
14.
Snow RW 《Nature》2004,430(7002):934-935
  相似文献   
15.
Flash spectra of the total solar eclipse throughout all its phases have been obtained in the extreme ultraviolet for the first time.  相似文献   
16.
Systematic screen for human disease genes in yeast   总被引:19,自引:0,他引:19  
High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.  相似文献   
17.
Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling. In the heart, NO inhibits L-type Ca2+ channels but stimulates sarcoplasmic reticulum (SR) Ca2+ release, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae, where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels allows NO to inhibit beta-adrenergic-induced inotropy. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro, suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1-/- and NOS3-/- mice develop age-related hypertrophy, although only NOS3-/- mice are hypertensive. NOS1/3-/- double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.  相似文献   
18.
Fifty years of inactivation   总被引:5,自引:0,他引:5  
Aldrich RW 《Nature》2001,411(6838):643-644
  相似文献   
19.
Fox CG  Chadwick WW  Embley RW 《Nature》2001,412(6848):727-729
Our understanding of submarine volcanic eruptions has improved substantially in the past decade owing to the recent ability to remotely detect such events and to then respond rapidly with synoptic surveys and sampling at the eruption site. But these data are necessarily limited to observations after the event. In contrast, the 1998 eruption of Axial volcano on the Juan de Fuca ridge was monitored by in situ sea-floor instruments. One of these instruments, which measured bottom pressure as a proxy for vertical deformation of the sea floor, was overrun and entrapped by the 1998 lava flow. The instrument survived-being insulated from the molten lava by the solidified crust-and was later recovered. The data serendipitously recorded by this instrument reveal the duration, character and effusion rate of a sheet flow eruption on a mid-ocean ridge, and document over three metres of lava-flow inflation and subsequent drain-back. After the brief two-hour eruption, the instrument also measured gradual subsidence of 1.4 metres over the next several days, reflecting deflation of the entire volcano summit as magma moved into the adjacent rift zone. These findings are consistent with our understanding of submarine lava effusion, as previously inferred from seafloor observations, terrestrial analogues, and laboratory simulations.  相似文献   
20.
We constructed maps for eight chromosomes (1, 6, 9, 10, 13, 20, X and (previously) 22), representing one-third of the genome, by building landmark maps, isolating bacterial clones and assembling contigs. By this approach, we could establish the long-range organization of the maps early in the project, and all contig extension, gap closure and problem-solving was simplified by containment within local regions. The maps currently represent more than 94% of the euchromatic (gene-containing) regions of these chromosomes in 176 contigs, and contain 96% of the chromosome-specific markers in the human gene map. By measuring the remaining gaps, we can assess chromosome length and coverage in sequenced clones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号