首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30734篇
  免费   82篇
  国内免费   80篇
系统科学   294篇
丛书文集   514篇
教育与普及   83篇
理论与方法论   125篇
现状及发展   12809篇
研究方法   1153篇
综合类   15320篇
自然研究   598篇
  2013年   188篇
  2012年   394篇
  2011年   1031篇
  2010年   159篇
  2008年   469篇
  2007年   523篇
  2006年   556篇
  2005年   547篇
  2004年   587篇
  2003年   550篇
  2002年   479篇
  2001年   892篇
  2000年   899篇
  1999年   533篇
  1992年   546篇
  1991年   469篇
  1990年   497篇
  1989年   453篇
  1988年   480篇
  1987年   487篇
  1986年   454篇
  1985年   650篇
  1984年   488篇
  1983年   398篇
  1982年   320篇
  1981年   346篇
  1980年   434篇
  1979年   928篇
  1978年   762篇
  1977年   732篇
  1976年   628篇
  1975年   695篇
  1974年   880篇
  1973年   791篇
  1972年   769篇
  1971年   946篇
  1970年   1288篇
  1969年   952篇
  1968年   862篇
  1967年   902篇
  1966年   872篇
  1965年   606篇
  1964年   198篇
  1959年   346篇
  1958年   564篇
  1957年   398篇
  1956年   372篇
  1955年   305篇
  1954年   332篇
  1948年   275篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.  相似文献   
973.
Random monoallelic expression and asynchronous replication define an unusual class of autosomal mammalian genes. We show that every cell has randomly chosen either the maternal or paternal copy of each given autosome pair, such that alleles of these genes scattered across the chosen chromosome replicate earlier than the alleles on the homologous chromosome. Thus, chromosome-pair non-equivalence, rather than being limited to X-chromosome inactivation, is a fundamental property of mouse chromosomes.  相似文献   
974.
The application of RNA interference (RNAi) to mammalian systems has the potential to revolutionize genetics and produce novel therapies. Here we investigate whether RNAi applied to a well-characterized gene can stably suppress gene expression in hematopoietic stem cells and produce detectable phenotypes in mice. Deletion of the Trp53 tumor suppressor gene greatly accelerates Myc-induced lymphomagenesis, resulting in highly disseminated disease. To determine whether RNAi suppression of Trp53 could produce a similar phenotype, we introduced several Trp53 short hairpin RNAs (shRNAs) into hematopoietic stem cells derived from E(mu)-Myc transgenic mice, and monitored tumor onset and overall pathology in lethally irradiated recipients. Different Trp53 shRNAs produced distinct phenotypes in vivo, ranging from benign lymphoid hyperplasias to highly disseminated lymphomas that paralleled Trp53-/- lymphomagenesis in the E(mu)-Myc mouse. In all cases, the severity and type of disease correlated with the extent to which specific shRNAs inhibited p53 activity. Therefore, RNAi can stably suppress gene expression in stem cells and reconstituted organs derived from those cells. In addition, intrinsic differences between individual shRNA expression vectors targeting the same gene can be used to create an 'epi-allelic series' for dissecting gene function in vivo.  相似文献   
975.
Individuals with hereditary hemochromatosis suffer from systemic iron overload due to duodenal hyperabsorption. Most cases arise from a founder mutation in HFE (845G-->A; ref. 2) that results in the amino-acid substitution C282Y and prevents the association of HFE with beta2-microglobulin. Mice homozygous with respect to a null allele of Hfe (Hfe-/-) or homozygous with respect to the orthologous 882G-->A mutation (Hfe(845A/845A)) develop iron overload that recapitulates hereditary hemochromatosis in humans, confirming that hereditary hemochromatosis arises from loss of HFE function. Much work has focused on an exclusive role for the intestine in hereditary hemochromatosis. HFE deficiency in intestinal crypt cells is thought to cause intestinal iron deficiency and greater expression of iron transporters such as SLC11A2 (also called DMT1, DCT1 and NRAMP2) and SLC11A3 (also called IREG1, ferroportin and MTP1; ref. 3). Published data on the expression of these transporters in the duodenum of HFE-deficient mice and humans are contradictory. In this report, we used a custom microarray to assay changes in duodenal and hepatic gene expression in Hfe-deficient mice. We found unexpected alterations in the expression of Slc39a1 (mouse ortholog of SLC11A3) and Cybrd1, which encode key iron transport proteins, and Hamp (hepcidin antimicrobial peptide), a hepatic regulator of iron transport. We propose that inappropriate regulatory cues from the liver underlie greater duodenal iron absorption, possibly involving the ferric reductase Cybrd1.  相似文献   
976.
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.  相似文献   
977.
Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2',3'-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss.  相似文献   
978.
979.
Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z 相似文献   
980.
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号