首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44423篇
  免费   124篇
  国内免费   194篇
系统科学   350篇
丛书文集   920篇
教育与普及   85篇
理论与方法论   153篇
现状及发展   20464篇
研究方法   1654篇
综合类   20410篇
自然研究   705篇
  2013年   343篇
  2012年   560篇
  2011年   1280篇
  2010年   233篇
  2008年   719篇
  2007年   799篇
  2006年   819篇
  2005年   781篇
  2004年   792篇
  2003年   759篇
  2002年   698篇
  2001年   1311篇
  2000年   1249篇
  1999年   814篇
  1992年   803篇
  1991年   635篇
  1990年   719篇
  1989年   681篇
  1988年   676篇
  1987年   751篇
  1986年   691篇
  1985年   896篇
  1984年   700篇
  1983年   577篇
  1982年   500篇
  1981年   543篇
  1980年   700篇
  1979年   1382篇
  1978年   1175篇
  1977年   1162篇
  1976年   941篇
  1975年   993篇
  1974年   1332篇
  1973年   1177篇
  1972年   1225篇
  1971年   1391篇
  1970年   1786篇
  1969年   1352篇
  1968年   1327篇
  1967年   1305篇
  1966年   1137篇
  1965年   816篇
  1964年   250篇
  1959年   467篇
  1958年   769篇
  1957年   547篇
  1956年   487篇
  1955年   439篇
  1954年   468篇
  1948年   314篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
821.
ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560–563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560–563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE–ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560–563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [3H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.  相似文献   
822.
823.
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.  相似文献   
824.
825.
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.  相似文献   
826.
827.
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.  相似文献   
828.

Introduction

Tff3 peptide exerts important functions in cytoprotection and restitution of the gastrointestinal (GI) tract epithelia. Moreover, its presence in the rodent inner ear and involvement in the hearing process was demonstrated recently. However, its role in the auditory system still remains elusive. Our previous results showed a deterioration of hearing with age in Tff3-deficient animals.

Results

Present detailed analysis of auditory brain stem response (ABR) measurements and immunohistochemical study of selected functional proteins indicated a normal function and phenotype of the cochlea in Tff3 mutants. However, a microarray-based screening of tissue derived from the auditory central nervous system revealed an alteration of securin (Pttg1) and serpina3n expression between wild-type and Tff3 knock-out animals. This was confirmed by qRT-PCR, immunostaining and western blots.

Conclusions

We found highly down-regulated Pttg1 and up-regulated serpina3n expression as a consequence of genetically deleting Tff3 in mice, indicating a potential role of these factors during the development of presbyacusis.  相似文献   
829.
Effectiveness of immune surveillance of intracellular viruses and bacteria depends upon a functioning antigen presentation pathway that allows infected cells to reveal the presence of an intracellular pathogen. The antigen presentation pathway uses virtually all endogenous polypeptides as a source to produce antigenic peptides that are eventually chaperoned to the cell surface by MHC class I molecules. Intriguingly, MHC I molecules present peptides encoded not only in the primary open reading frames but also those encoded in alternate reading frames. Here, we review recent studies on the generation of cryptic pMHC I. We focus on the immunological significance of cryptic pMHC I, and the novel translational mechanisms that allow production of these antigenic peptides from unconventional sources.  相似文献   
830.
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号