首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   1篇
系统科学   1篇
教育与普及   1篇
现状及发展   21篇
研究方法   9篇
综合类   82篇
自然研究   6篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   2篇
  2012年   7篇
  2011年   10篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   9篇
  2005年   4篇
  2004年   1篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   1篇
  1971年   1篇
  1970年   6篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
  1965年   2篇
  1961年   1篇
排序方式: 共有120条查询结果,搜索用时 0 毫秒
51.
J C Smith  B M Price  K Van Nimmen  D Huylebroeck 《Nature》1990,345(6277):729-731
The first inductive interaction in amphibian development is mesoderm induction, when a signal from the vegetal hemisphere of the blastula induces mesoderm from overlying equatorial cells. Recently, several 'mesoderm-inducing factors' (MIFs) have been discovered. These cause isolated Xenopus animal caps to form mesodermal cell types such as muscle, instead of their normal fate of epidermis. The MIFs fall into two classes. One comprises members of the fibroblast growth factor (FGF) family, and the other members of the transforming growth factor type beta (TGF-beta) family. Of the latter group, the most potent is XTC-MIF, a protein produced by Xenopus XTC cells. Here we show that XTC-MIF is the homologue of mammalian activin A. Activins modulate the release of follicle-stimulating hormone from cultured anterior pituitary cells and cause the differentiation of two erythroleukaemia cell lines. Our results indicate that these molecules may also act in early development during formation of the mesoderm.  相似文献   
52.
A subpopulation of rat dorsal root ganglion neurones is catecholaminergic   总被引:3,自引:0,他引:3  
J Price  A W Mudge 《Nature》1983,301(5897):241-243
The neurotransmitters used by the sensory neurones of the dorsal root ganglia (DRG) are unknown. A proportion of these cells contain physiologically active peptides; for example, subpopulations of small-diameter neurones contain substance P or somatostatin. Although these peptides probably have some influence on synaptic transmission in the dorsal horn of the spinal cord, their status as neurotransmitters is uncertain and it is possible that they coexist with conventional neurotransmitters. In addition, the neurones containing identified peptides account for only a fraction of the DRG sensory neurones. There is evidence that the DRG contain catecholamines within fibres thought to be autonomic, but these substances have not been found within the sensory cell bodies themselves. Moreover, the apparently inappropriate, inhibitory physiological effect of catecholamines in the dorsal horn has argued against their being primary sensory neurotransmitter molecules. We have used here antisera against tyrosine hydroxylase (TH; EC 1.14.16.2) and dopamine-beta-hydroxylase (DBH; EC 1.14.17.1), two enzymes specific to catecholaminergic cells, to show that a subpopulation of rat DRG neurones is catecholaminergic and that the neurotransmitter they make is probably dopamine. We believe this to be the first report of catecholaminergic sensory neurones.  相似文献   
53.
Zusammenfassung Die Protein-Zusammensetzung des sarcoplasmatischen Reticulums vom Herzmuskel wurde mittels Polyacrylamid-Gel-Elektrophorese untersucht und ihr Unterschied in der hauptsächlichen Proteinkomponente zum Skelettmuskel SR gefunden.

Supported by a research studentship from the Science Research Council.

Supported by a research assistantship from the Science Research Council.  相似文献   
54.
Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.  相似文献   
55.
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.  相似文献   
56.
Atypical menaquinone pattern in a strain of Staphylococcus aureus   总被引:2,自引:0,他引:2  
L Jeffries  M Harris  S A Price 《Nature》1967,216(5117):808-809
  相似文献   
57.
58.
Alzheimer's disease is a progressive degenerative disease of the nervous system characterized neuropathologically by the presence of senile plaques and neurofibrillary tangles in amygdala, hippocampus and neocortex. Dysfunction and death of basal forebrain cholinergic neurones projecting to forebrain targets are associated with marked decreases in cholinergic markers, including the activity of choline acetyltransferase (ChAT). Although cortical levels of somatostatin and somatostatin receptors are reduced in Alzheimer's, no consistent changes have been reported in other neuropeptide systems. We have now examined in control and Alzheimer's brain tissues pre- and postsynaptic markers of corticotropin-releasing factor (CRF), a hypothalamic peptide regulating pituitary-adrenocortical secretion which also seems to act as a neurotransmitter in the central nervous system (CNS). We have found that in Alzheimer's, the concentrations of CRF-like immunoreactivity (CRF-IR) are reduced and that there are reciprocal increases in CRF receptor binding in affected cortical areas. These changes are significantly correlated with decrements in ChAT activity. Our results strongly support a neurotransmitter role for CRF in brain and demonstrate, for the first time, a modulation of CNS CRF receptors associated with altered CRF content. These observations further suggest a possible role for CRF in the pathophysiology of the dementia. Future therapies directed at increasing CRF levels in brain may prove useful for treatment.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号