首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   2篇
  国内免费   2篇
系统科学   13篇
丛书文集   1篇
理论与方法论   15篇
现状及发展   69篇
研究方法   56篇
综合类   244篇
自然研究   20篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   30篇
  2011年   47篇
  2010年   17篇
  2009年   4篇
  2008年   37篇
  2007年   42篇
  2006年   29篇
  2005年   25篇
  2004年   21篇
  2003年   33篇
  2002年   22篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1979年   1篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
201.
Metallorganic chemical vapor deposition is used as a novel simple pore tailoring method to fine-tune the pore opening size of SBA-15 materials without significant loss in pore volume and surface area. By using acetylene as carbon source and copper (II) acetylacetonate as precursor, the poremouth of SBA-15 is effectively reduced from 5.78 nm to 3.67 nm while maintaining the pore body at 5.78 nm. The effect of four pore modification factors-the ratio of acetylene/nitrogen, the feeding time of carbon precursor, the ratio of SBA-C/Cu(acac)2 and the cycles of MOCVD on the final pore structure of the SBA-15/carbon/copper composite is studied. The morphology and microstructure of the resulting product SBA-C-Cu are characterized by XRD patterns, TEM images and EDS analysis. The XRD and TEM reveal that the SBA-C-Cu composite is highly hexagonally ordered and has similar particle morphology as the original SBA-15.  相似文献   
202.
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.  相似文献   
203.
Stein WE  Berry CM  Hernick LV  Mannolini F 《Nature》2012,483(7387):78-81
The origin of trees by the mid-Devonian epoch (398-385 million years ago) signals a major change in terrestrial ecosystems with potential long-term consequences including increased weathering, drop in atmospheric CO(2), modified climate, changes in sedimentation patterns and mass extinction. However, little is known about the ecology of early forests or how changes in early terrestrial ecosystems influenced global processes. One of the most famous palaeontological records for this time is the 'oldest fossil forest' at Riverside Quarry, Gilboa, New York, USA, discovered in the 1920s. Hundreds of large Eospermatopteris sandstone casts, now thought to represent the bases of standing cladoxylopsid trees, were recovered from a horizon that was originally interpreted as a muddy swamp. After quarry operations ceased, relatively minor outcrops of similar fossils at nearby localities have provided limited opportunities to evaluate this pervasive view using modern methods. In 2010, removal of the quarry backfill enabled reappraisal of the palaeoecology of this important site. Here we describe a 1,200?m(2) map showing numerous Eospermatopteris root systems in life position within a mixed-age stand of trees. Unexpectedly, large woody rhizomes with adventitious roots and aerial branch systems identified as aneurophytalean progymnosperms run between, and probably climb into, Eospermatopteris trees. We describe the overall habit for these surprisingly large aneurophytaleans, the earliest fossil group having wood produced by a bifacial vascular cambium. The site also provides evidence for arborescence within lycopsids, extending the North American range for trees in this ecologically critical group. The rooting horizon is a dark grey sandy mudstone showing limited root penetration. Although clearly belonging to a wetland coastal plain environment, the forest was probably limited in duration and subject to periodic disturbance. These observations provide fundamental clarification of the palaeoecology of this mixed-group early forest, with important implications for interpreting coeval assemblage data worldwide.  相似文献   
204.
205.
206.
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.  相似文献   
207.
K R?misch  J Webb  J Herz  S Prehn  R Frank  M Vingron  B Dobberstein 《Nature》1989,340(6233):478-482
Most proteins exported from mammalian cells contain a signal sequence which mediates targeting to and insertion into the membrane of the endoplasmic reticulum (ER). Involved in this process are the signal-recognition particle (SRP) and docking protein (DP), the receptor for SRP in the ER membrane. SRP interacts with the signal sequence on nascent polypeptide chains and retards their further elongation, which resumes only after interaction of the arrested ribosomal complex with the docking protein. SRP is a ribonucleoprotein particle comprising a 7S RNA and six polypeptides with relative molecular masses (Mr) of 9,000 (9K) 14K, 19K, 54K, 68K and 72K (ref. 1). The 9K and 14K proteins are essential for elongation arrest and the 68K-72K heterodimer is required for docking to the ER membrane. The 54K protein binds to the signal sequence when it emerges from the ribosome. Docking protein consists of two polypeptides, a 72K alpha-subunit (DP alpha) and a 30K beta-subunit (DP beta). No components structurally homologous to SRP and docking protein have yet been found in yeast or Escherichia coli. To understand the molecular nature of the interaction between the signal sequence and its receptor(s) we have characterized a complementary DNA coding for the 54K protein of SRP. Significant sequence homology was found to part of DP alpha and two E. coli proteins of unknown function. The homologous region includes a putative GTP-binding domain.  相似文献   
208.
209.
210.
p63 and p73 are required for p53-dependent apoptosis in response to DNA damage   总被引:49,自引:0,他引:49  
Flores ER  Tsai KY  Crowley D  Sengupta S  Yang A  McKeon F  Jacks T 《Nature》2002,416(6880):560-564
The tumour-suppressor gene p53 is frequently mutated in human cancers and is important in the cellular response to DNA damage. Although the p53 family members p63 and p73 are structurally related to p53, they have not been directly linked to tumour suppression, although they have been implicated in apoptosis. Given the similarity between this family of genes and the ability of p63 and p73 to transactivate p53 target genes, we explore here their role in DNA damage-induced apoptosis. Mouse embryo fibroblasts deficient for one or a combination of p53 family members were sensitized to undergo apoptosis through the expression of the adenovirus E1A oncogene. While using the E1A system facilitated our ability to perform biochemical analyses, we also examined the functions of p63 and p73 using an in vivo system in which apoptosis has been shown to be dependent on p53. Using both systems, we show here that the combined loss of p63 and p73 results in the failure of cells containing functional p53 to undergo apoptosis in response to DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号