首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10193篇
  免费   25篇
  国内免费   37篇
系统科学   30篇
丛书文集   48篇
教育与普及   30篇
理论与方法论   24篇
现状及发展   3961篇
研究方法   522篇
综合类   5471篇
自然研究   169篇
  2012年   151篇
  2011年   325篇
  2010年   60篇
  2009年   54篇
  2008年   168篇
  2007年   208篇
  2006年   192篇
  2005年   214篇
  2004年   212篇
  2003年   190篇
  2002年   206篇
  2001年   429篇
  2000年   437篇
  1999年   294篇
  1996年   52篇
  1994年   269篇
  1992年   252篇
  1991年   201篇
  1990年   230篇
  1989年   192篇
  1988年   185篇
  1987年   190篇
  1986年   201篇
  1985年   264篇
  1984年   201篇
  1983年   163篇
  1982年   135篇
  1981年   140篇
  1980年   144篇
  1979年   325篇
  1978年   263篇
  1977年   215篇
  1976年   191篇
  1975年   195篇
  1974年   206篇
  1973年   176篇
  1972年   206篇
  1971年   245篇
  1970年   303篇
  1969年   229篇
  1968年   226篇
  1967年   194篇
  1966年   223篇
  1965年   149篇
  1959年   75篇
  1958年   123篇
  1957年   81篇
  1956年   58篇
  1954年   62篇
  1948年   57篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
711.
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. It involves initiation factor-mediated assembly of a 40S ribosomal subunit and initiator tRNA into a 48S initiation complex at the initiation codon of an mRNA and subsequent joining of a 60S ribosomal subunit to form a translationally active 80S ribosome. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their individual functions in this process. The mechanism of translation initiation has also been found to be influenced significantly by structural properties of the 5' and 3' termini of individual mRNAs. This review describes some of the major developments in elucidating molecular details of the mechanism of initiation that have occurred over the last decade.  相似文献   
712.
Female reproductive tissues possess a unique ability to accommodate a remarkable amount of cell turnover and extracellular matrix (ECM) remodeling following puberty. Cellular structures within ovary, uterus, and mammary tissue not only change cyclically in response to ovarian hormones but also undergo differentiation during pregnancy, and eventually revert to that resembling the pre-pregnant stage. Cell proliferation, apoptosis, invasion, and differentiation are integral cellular processes that are precisely regulated in reproductive tissues, but become dysregulated in pathologies such as cancer. Explicit reorganization of ECM and basement membranes is also critical to preserve the form and function of these tissues. Here we review the evidence that coordinated spatiotemporal expression patterns of matrix metalloproteinase (MMP) genes and their tissue inhibitors (TIMPs) are important in cell and ECM turnover of the ovary, uterus, and mammary tissues. We discuss how perturbation in these gene families may impact the biology of these reproductive tissues and the factors implicated in the control of MMP and TIMP gene expression. The observed trends in MMP and TIMP expression involved in ovarian and mammary carcinomas are also presented.  相似文献   
713.
Mutations in the gene encoding ATP-binding cassette transporter 1 ( ABC1) have been reported in Tangier disease (TD), an autosomal recessive disorder that is characterized by almost complete absence of plasma high-density lipoprotein (HDL), deposition of cholesteryl esters in the reticulo-endothelial system (RES) and aberrant cellular lipid trafficking. We demonstrate here that mice with a targeted inactivation of Abc1 display morphologic abnormalities and perturbations in their lipoprotein metabolism concordant with TD. ABC1 is expressed on the plasma membrane and the Golgi complex, mediates apo-AI associated export of cholesterol and phospholipids from the cell, and is regulated by cholesterol flux. Structural and functional abnormalities in caveolar processing and the trans-Golgi secretory pathway of cells lacking functional ABC1 indicate that lipid export processes involving vesicular budding between the Golgi and the plasma membrane are severely disturbed.  相似文献   
714.
Sensory motor neuropathy is associated with various inherited disorders including Charcot-Marie-Tooth disease, X-linked adrenoleukodystrophy/adrenomyeloneuropathy and Refsum disease. In the latter two, the neuropathy is thought to result from the accumulation of specific fatty acids. We describe here three patients with elevated plasma concentrations of pristanic acid (a branched-chain fatty acid) and C27-bile-acid intermediates. Two of the patients suffered from adult-onset sensory motor neuropathy. One patient also had pigmentary retinopathy, suggesting Refsum disease, whereas the other patient had upper motor neuron signs in the legs, suggesting adrenomyeloneuropathy. The third patient was a child without neuropathy. In all three patients we discovered a deficiency of alpha-methylacyl-CoA racemase (AMACR). This enzyme is responsible for the conversion of pristanoyl-CoA and C27-bile acyl-CoAs to their (S)-stereoisomers, which are the only stereoisomers that can be degraded via peroxisomal beta-oxidation. Sequence analysis of AMACR cDNA from the patients identified two different mutations that are likely to cause disease, based on analysis in Escherichia coli. Our findings have implications for the diagnosis of adult-onset neuropathies of unknown aetiology.  相似文献   
715.
716.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   
717.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is an early onset neurodegenerative disease with high prevalence (carrier frequency 1/22) in the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region of Quebec. We previously mapped the gene responsible for ARSACS to chromosome 13q11 and identified two ancestral haplotypes. Here we report the cloning of this gene, SACS, which encodes the protein sacsin. The ORF of SACS is 11,487 bp and is encoded by a single gigantic exon spanning 12,794 bp. This exon is the largest to be identified in any vertebrate organism. The ORF is conserved in human and mouse. The putative protein contains three large segments with sequence similarity to each other and to the predicted protein of an Arabidopsis thaliana ORF. The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding. SACS is expressed in a variety of tissues, including the central nervous system. We identified two SACSmutations in ARSACS families that lead to protein truncation, consistent with haplotype analysis.  相似文献   
718.
719.
DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families.  相似文献   
720.
Crosses between the two North American rodent species Peromyscus polionotus (PO) and Peromyscus maniculatus (BW) yield parent-of-origin effects on both embryonic and placental growth. The two species are approximately the same size, but a female BW crossed with a male PO produces offspring that are smaller than either parent. In the reciprocal cross, the offspring are oversized and typically die before birth. Rare survivors are exclusively female, consistent with Haldane's rule, which states that in instances of hybrid sterility or inviability, the heterogametic sex tends to be more severely affected. To understand these sex- and parent-of-origin-specific patterns of overgrowth, we analysed reciprocal backcrosses. Our studies reveal that hybrid inviability is partially due to a maternally expressed X-linked PO locus and an imprinted paternally expressed autosomal BW locus. In addition, the hybrids display skewing of X-chromosome inactivation in favour of the expression of the BW X chromosome. The most severe overgrowth is accompanied by widespread relaxation of imprinting of mostly paternally expressed genes. Both genetic and epigenetic mechanisms underlie hybrid inviability in Peromyscus and hence have a role in the establishment and maintenance of reproductive isolation barriers in mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号