首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2762篇
  免费   9篇
  国内免费   25篇
系统科学   46篇
丛书文集   2篇
教育与普及   12篇
理论与方法论   41篇
现状及发展   312篇
研究方法   372篇
综合类   1911篇
自然研究   100篇
  2021年   9篇
  2019年   6篇
  2018年   25篇
  2017年   16篇
  2016年   29篇
  2015年   22篇
  2014年   22篇
  2013年   44篇
  2012年   208篇
  2011年   356篇
  2010年   72篇
  2009年   10篇
  2008年   224篇
  2007年   235篇
  2006年   228篇
  2005年   254篇
  2004年   260篇
  2003年   191篇
  2002年   248篇
  2001年   10篇
  2000年   24篇
  1999年   16篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   5篇
  1990年   8篇
  1989年   12篇
  1986年   10篇
  1985年   10篇
  1984年   6篇
  1983年   13篇
  1982年   12篇
  1981年   12篇
  1979年   20篇
  1978年   12篇
  1977年   12篇
  1975年   5篇
  1974年   9篇
  1973年   7篇
  1972年   7篇
  1971年   9篇
  1970年   13篇
  1969年   5篇
  1968年   9篇
  1967年   11篇
  1965年   5篇
排序方式: 共有2796条查询结果,搜索用时 46 毫秒
71.
The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.  相似文献   
72.
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.  相似文献   
73.
In vivo genome editing restores haemostasis in a mouse model of haemophilia   总被引:2,自引:0,他引:2  
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.  相似文献   
74.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
75.
The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at ~10 ? resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.  相似文献   
76.
Neural crest regulates myogenesis through the transient activation of NOTCH   总被引:1,自引:0,他引:1  
Rios AC  Serralbo O  Salgado D  Marcelle C 《Nature》2011,473(7348):532-535
How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH signalling to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. Our results indicate that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.  相似文献   
77.
A system for the continuous directed evolution of biomolecules   总被引:1,自引:0,他引:1  
Esvelt KM  Carlson JC  Liu DR 《Nature》2011,472(7344):499-503
  相似文献   
78.
The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ~40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.  相似文献   
79.
An integrated semiconductor device enabling non-optical genome sequencing   总被引:4,自引:0,他引:4  
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号