首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   1篇
  国内免费   1篇
系统科学   8篇
理论与方法论   2篇
现状及发展   63篇
研究方法   88篇
综合类   117篇
自然研究   10篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   11篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   27篇
  2011年   40篇
  2010年   15篇
  2009年   3篇
  2008年   22篇
  2007年   24篇
  2006年   21篇
  2005年   20篇
  2004年   19篇
  2003年   18篇
  2002年   20篇
  2001年   2篇
  1998年   2篇
  1996年   1篇
  1982年   1篇
  1980年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   2篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
211.
Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110alpha, p110beta or p110delta), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110alpha activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110alpha led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110alpha exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110alpha activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110beta in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1alpha, whereas p110delta is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.  相似文献   
212.
Ablation of tetraspanin protein TSPAN12 from human MDA-MB-231 cells significantly decreased primary tumor xenograft growth, while increasing tumor apoptosis. Furthermore, TSPAN12 removal markedly enhanced tumor-endothelial interactions and increased metastasis to mouse lungs. TSPAN12 removal from human MDA-MB-231 cells also caused diminished association between FZD4 (a key canonical Wnt pathway receptor) and its co-receptor LRP5. The result likely explains substantially enhanced proteosomal degradation of β-catenin, a key effecter of canonical Wnt signaling. Consistent with disrupted canonical Wnt signaling, TSPAN12 ablation altered expression of LRP5, Naked 1 and 2, DVL2, DVL3, Axin 1, and GSKβ3 proteins. TSPAN12 ablation also altered expression of several genes regulated by β-catenin (e.g. CCNA1, CCNE2, WISP1, ID4, SFN, ME1) that may help to explain altered tumor growth and metastasis. In conclusion, these results provide the first evidence for TSPAN12 playing a role in supporting primary tumor growth and suppressing metastasis. TSPAN12 appears to function by stabilizing FZD4–LRP5 association, in support of canonical Wnt-pathway signaling, leading to enhanced β-catenin expression and function.  相似文献   
213.
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.  相似文献   
214.
Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, dl-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC50) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50–70 % of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70 % of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.  相似文献   
215.
216.
Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.  相似文献   
217.
We show that haploinsufficiency of KANSL1 is sufficient to cause the 17q21.31 microdeletion syndrome, a multisystem disorder characterized by intellectual disability, hypotonia and distinctive facial features. The KANSL1 protein is an evolutionarily conserved regulator of the chromatin modifier KAT8, which influences gene expression through histone H4 lysine 16 (H4K16) acetylation. RNA sequencing studies in cell lines derived from affected individuals and the presence of learning deficits in Drosophila melanogaster mutants suggest a role for KANSL1 in neuronal processes.  相似文献   
218.
219.
Alzheimer's disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide.  相似文献   
220.
To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10?? and two loci with a combined P < 5 × 10??). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10??). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号