首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   0篇
系统科学   4篇
教育与普及   1篇
理论与方法论   4篇
现状及发展   39篇
研究方法   37篇
综合类   175篇
自然研究   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2015年   6篇
  2014年   1篇
  2013年   1篇
  2012年   24篇
  2011年   29篇
  2010年   11篇
  2009年   4篇
  2008年   24篇
  2007年   20篇
  2006年   31篇
  2005年   24篇
  2004年   21篇
  2003年   20篇
  2002年   21篇
  2000年   2篇
  1999年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有264条查询结果,搜索用时 547 毫秒
141.
在F344雄性大鼠腹腔注射血蓝蛋白(KLH),研究T 细胞依赖抗原初始免疫反应对中枢神经系统5 羟色胺(5 HT)代谢的影响。当免疫刺激大鼠4天后,其下丘脑匀浆5 羟色胺水平出现降低,同时应用在体脑微透析技术研究发现清醒大鼠腹腔注射血蓝蛋白4天后,其下丘脑前叶细胞外液的5 羟色胺水平增加。为了评价在免疫反应中大鼠下丘脑5 羟色胺释放效应,本文应用氯苯丙胺(PCA)选择性预先耗竭5 羟色胺释放,并测定这些动物在注射血蓝蛋白后抗体产生情况。结果显示在应用氯苯丙胺预处理的血蓝蛋白免疫动物特异抗体IgM和IgG与未用氯苯丙胺预处理的动物比较均有明显增加(P<0.01)。上述资料表明,对于T 细胞依赖抗原,其初始抗体产生的量是由位于下丘脑5 羟色胺神经终端抑制性递质释放所调节。  相似文献   
142.
143.
Achermann M  Petruska MA  Kos S  Smith DL  Koleske DD  Klimov VI 《Nature》2004,429(6992):642-646
As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies--for example, displays, fluorescence tagging, solid-state lighting and lasers. An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron-hole pairs (the electron-hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron-hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.  相似文献   
144.
The small G protein Rho subfamily controls several cellular events such as growth, movement, proliferation and differentiation by rearranging actin and cytoskeleton proteins. Most of these effects are mediated by the activation of growth factor and extracellular matrix molecule receptors, suggesting a role for Rho molecules in the transduction pathway of these receptors. Despite the importance of Rho peptides in fundamental cellular events, data on their subcellular immunolocalisation are sparse: here we investigated the expression and subcellular localisation of RhoA in resting (cultured on plastic) and activated (Matri-cell or hepatocyte growth factor) MDCK cells by immunoperoxidase and immunogold techniques. Resting MDCK cells contain detectable amounts of RhoA mainly localised in the cytoplasm; RhoA expression is significantly enhanced by Matri-cell substrates that promote translocation of RhoA at the membrane level. This enhancing effect is reduced after exposure to hepatocyte growth factor.  相似文献   
145.
Pellegrini L  Burke DF  von Delft F  Mulloy B  Blundell TL 《Nature》2000,407(6807):1029-1034
Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.  相似文献   
146.
Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.  相似文献   
147.
148.
149.
The spindle checkpoint prevents chromosome mis-segregation by delaying sister chromatid separation until all chromosomes have achieved bipolar attachment to the mitotic spindle. Its operation is essential for accurate chromosome segregation, whereas its dysregulation can contribute to birth defects and tumorigenesis. The target of the spindle checkpoint is the anaphase-promoting complex (APC), a ubiquitin ligase that promotes sister chromatid separation and progression to anaphase. Using a short hairpin RNA screen targeting components of the ubiquitin-proteasome pathway in human cells, we identified the deubiquitinating enzyme USP44 (ubiquitin-specific protease 44) as a critical regulator of the spindle checkpoint. USP44 is not required for the initial recognition of unattached kinetochores and the subsequent recruitment of checkpoint components. Instead, it prevents the premature activation of the APC by stabilizing the APC-inhibitory Mad2-Cdc20 complex. USP44 deubiquitinates the APC coactivator Cdc20 both in vitro and in vivo, and thereby directly counteracts the APC-driven disassembly of Mad2-Cdc20 complexes (discussed in an accompanying paper). Our findings suggest that a dynamic balance of ubiquitination by the APC and deubiquitination by USP44 contributes to the generation of the switch-like transition controlling anaphase entry, analogous to the way that phosphorylation and dephosphorylation of Cdk1 by Wee1 and Cdc25 controls entry into mitosis.  相似文献   
150.
In the past, clinical trials transplanting bone marrow–derived mononuclear cells reported a limited improvement in cardiac function. Therefore, the search for stem cells leading to more successful stem cell therapies continues. Good candidates are the so-called cardiac stem cells (CSCs). To date, there is no clear evidence to show if these cells are intrinsic stem cells from the heart or mobilized cells from bone marrow. In this study we performed a comparative study between human mesenchymal stem cells (hMSCs), purified c-kit+ CSCs, and cardiosphere-derived cells (CDCs). Our results showed that hMSCs can be discriminated from CSCs by their differentiation capacity towards adipocytes and osteocytes and the expression of CD140b. On the other hand, cardiac progenitors display a greater cardiomyogenic differentiation capacity. Despite a different isolation protocol, no distinction could be made between c-kit+ CSCs and CDCs, indicating that they probably derive from the same precursor or even are the same cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号