首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
系统科学   4篇
理论与方法论   1篇
现状及发展   9篇
研究方法   10篇
综合类   47篇
自然研究   9篇
  2021年   1篇
  2020年   3篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   7篇
  2007年   8篇
  2006年   13篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   7篇
  1967年   1篇
排序方式: 共有80条查询结果,搜索用时 109 毫秒
21.
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.  相似文献   
22.
GenePattern 2.0   总被引:1,自引:0,他引:1  
  相似文献   
23.
24.
The Jurassic period is an important stage in early mammalian evolution, as it saw the first diversification of this group, leading to the stem lineages of monotremes and modern therian mammals. However, the fossil record of Jurassic mammals is extremely poor, particularly in the southern continents. Jurassic mammals from Gondwanaland are so far only known from Tanzania and Madagascar, and from trackway evidence from Argentina. Here we report a Jurassic mammal represented by a dentary, which is the first, to our knowledge, from South America. The tiny fossil from the Middle to Late Jurassic of Patagonia is a representative of the recently termed Australosphenida, a group of mammals from Gondwanaland that evolved tribosphenic molars convergently to the Northern Hemisphere Tribosphenida, and probably gave rise to the monotremes. Together with other mammalian evidence from the Southern Hemisphere, the discovery of this new mammal indicates that the Australosphenida had diversified and were widespread in Gondwanaland well before the end of the Jurassic, and that mammalian faunas from the Southern Hemisphere already showed a marked distinction from their northern counterparts by the Middle to Late Jurassic.  相似文献   
25.
Takeuchi A  Reyes N  Artigas P  Gadsby DC 《Nature》2008,456(7220):413-416
P-type ATPases pump ions across membranes, generating steep electrochemical gradients that are essential for the function of all cells. Access to the ion-binding sites within the pumps alternates between the two sides of the membrane to avoid the dissipation of the gradients that would occur during simultaneous access. In Na(+),K(+)-ATPase pumps treated with the marine agent palytoxin, this strict alternation is disrupted and binding sites are sometimes simultaneously accessible from both sides of the membrane, transforming the pumps into ion channels (see, for example, refs 2, 3). Current recordings in these channels can monitor accessibility of introduced cysteine residues to water-soluble sulphydryl-specific reagents. We found previously that Na(+),K(+) pump-channels open to the extracellular surface through a deep and wide vestibule that emanates from a narrower pathway between transmembrane helices 4 and 6 (TM4 and TM6). Here we report that cysteine scans from TM1 to TM6 reveal a single unbroken cation pathway that traverses palytoxin-bound Na(+),K(+) pump-channels from one side of the membrane to the other. This pathway comprises residues from TM1, TM2, TM4 and TM6, passes through ion-binding site II, and is probably conserved in structurally and evolutionarily related P-type pumps, such as sarcoplasmic- and endoplasmic-reticulum Ca(2+)-ATPases and H(+),K(+)-ATPases.  相似文献   
26.
For a wide variety of microbial pathogens, the outcome of the infection is indeterminate. In some individuals the microbe is cleared, but in others it establishes a chronic infection, and the factors that tip this balance are often unknown. In a widely used model of chronic viral infection, C57BL/6 mice clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV), but the clone 13 strain persists. Here we show that the Armstrong strain induces a profound lymphopenia at days 1-3 after infection, but the clone 13 strain does not. If we transiently augment lymphopenia by treating the clone-13-infected mice with the drug FTY720 at days 0-2 after infection, the mice successfully clear the infection by day 30. Clearance does not occur when CD4 T cells are absent at the time of treatment, indicating that the drug is not exerting direct antiviral effects. Notably, FTY720 treatment of an already established persistent infection also leads to viral clearance. In both models, FTY720 treatment preserves or augments LCMV-specific CD4 and CD8 T-cell responses, a result that is counter-intuitive because FTY720 is generally regarded as a new immunosuppressive agent. Because FTY720 targets host pathways that are completely evolutionarily conserved, our results may be translatable into new immunotherapies for the treatment of chronic microbial infections in humans.  相似文献   
27.
Bipolar supercurrent in graphene   总被引:3,自引:0,他引:3  
Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.  相似文献   
28.
29.
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.  相似文献   
30.
Based on the terminalia structures, the species Eburia albolineata Fisher 1944 is transferred from Eburiini (Cerambycoinia) to Bothriospilini (Trachyderoinia) in a new genus: Pseudeburia gen. nov.

http://zoobank.org/urn:lsid:zoobank.org:pub:1C803D54-8B84-4800-A91B-04F5EC8DBA8D  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号