首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   7篇
  国内免费   4篇
系统科学   3篇
丛书文集   2篇
教育与普及   1篇
理论与方法论   9篇
现状及发展   60篇
研究方法   35篇
综合类   155篇
自然研究   2篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   7篇
  2013年   7篇
  2012年   17篇
  2011年   32篇
  2010年   19篇
  2009年   11篇
  2008年   21篇
  2007年   13篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   19篇
  2002年   12篇
  2001年   6篇
  2000年   11篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1966年   2篇
排序方式: 共有267条查询结果,搜索用时 187 毫秒
201.
Adipocyte dysfunction is associated with the development of obesity. This study shows that 6-thioinosine inhibits adipocyte differentiation. The mRNA levels of PPAR γ and C/EBPα, but not C/EBPβ and δ, were reduced by 6-thioinosine. Moreover, the mRNA levels of PPAR γ target genes (LPL, CD36, aP2, and LXRα) were down-regulated by 6-thioinosine. We also demonstrated that 6-thioinosine inhibits the transactivation activity and the mRNA level of PPAR γ. Additionally, attempts to elucidate a possible mechanism underlying the 6-thioinosine-mediated effects revealed that 6-thioinosine induced iNOS gene expression without impacting eNOS expression, and that this was mediated through activation of AP-1, especially, JNK. In addition, 6-thioinosine was found to operate upstream of MEKK-1 in JNK activation signaling. Taken together, these findings suggest that the inhibition of adipocyte differentiation by 6-thioinosine occurs primarily through the reduced expression of PPAR γ, which is mediated by upregulation of iNOS via the activation of JNK.  相似文献   
202.
Kharchenko PV  Xi R  Park PJ 《Nature genetics》2011,43(12):1167-9; author reply 1171-2
  相似文献   
203.
We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest Pvalue (6.7 x 10(-13), odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 x 10(-42) (OR = 1.40; 95% CI = 1.34-1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of beta-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.  相似文献   
204.
Interactions of killer cell immunoglobulin-like receptors (KIRs) with major histocompatibility complex (MHC) class I ligands diversify natural killer cell responses to infection. By analyzing sequence variation in diverse human populations, we show that the KIR3DL1/S1 locus encodes two lineages of polymorphic inhibitory KIR3DL1 allotypes that recognize Bw4 epitopes of protein">HLA-A and HLA-B and one lineage of conserved activating KIR3DS1 allotypes, also implicated in Bw4 recognition. Balancing selection has maintained these three lineages for over 3 million years. Variation was selected at D1 and D2 domain residues that contact HLA class I and at two sites on D0, the domain that enhances the binding of KIR3D to HLA class I. HLA-B variants that gained Bw4 through interallelic microconversion are also products of selection. A worldwide comparison uncovers unusual KIR3DL1/S1 evolution in modern sub-Saharan Africans. Balancing selection is weak and confined to D0, KIR3DS1 is rare and KIR3DL1 allotypes with similar binding sites predominate. Natural killer cells express the dominant KIR3DL1 at a high frequency and with high surface density, providing strong responses to cells perturbed in Bw4 expression.  相似文献   
205.
Park H  Pontius W  Guet CC  Marko JF  Emonet T  Cluzel P 《Nature》2010,468(7325):819-823
The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation-response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium but is extensible to living cells. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence.  相似文献   
206.
Won H  Lee HR  Gee HY  Mah W  Kim JI  Lee J  Ha S  Chung C  Jung ES  Cho YS  Park SG  Lee JS  Lee K  Kim D  Bae YC  Kaang BK  Lee MG  Kim E 《Nature》2012,486(7402):261-265
Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.  相似文献   
207.
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号