首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   20篇
  国内免费   38篇
系统科学   51篇
丛书文集   11篇
教育与普及   8篇
理论与方法论   11篇
现状及发展   125篇
研究方法   72篇
综合类   683篇
自然研究   3篇
  2024年   3篇
  2023年   4篇
  2022年   13篇
  2021年   8篇
  2020年   10篇
  2019年   5篇
  2018年   13篇
  2017年   18篇
  2016年   20篇
  2015年   16篇
  2014年   29篇
  2013年   29篇
  2012年   59篇
  2011年   75篇
  2010年   41篇
  2009年   35篇
  2008年   62篇
  2007年   56篇
  2006年   50篇
  2005年   49篇
  2004年   26篇
  2003年   49篇
  2002年   56篇
  2001年   38篇
  2000年   34篇
  1999年   23篇
  1998年   6篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   10篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   5篇
  1973年   8篇
  1972年   7篇
  1970年   3篇
  1968年   2篇
  1967年   2篇
  1966年   7篇
排序方式: 共有964条查询结果,搜索用时 15 毫秒
21.
22.
提出了一种低密度校验(IDPC)码的规则校验矩阵设计算法.首先设计3个不同的子矩阵,每个子矩阵通过对单位矩阵进行不同的移位运算后组合生成,然后将这3个子矩阵组合生成所需要的低密度校验矩阵,最后利用文中提到的短环检验算法搜索出使得生成的校验矩阵四环数、六环数均为零的移位算子.用该校验矩阵所对应的生成矩阵对随机信息进行编码,AWGN信道下的仿真结果表明,具有逼近MacKay随机码的误码率性能.  相似文献   
23.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.  相似文献   
24.
Oxysterols direct immune cell migration via EBI2   总被引:1,自引:0,他引:1  
Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.  相似文献   
25.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
26.
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.  相似文献   
27.
28.
Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules.  相似文献   
29.
Choi M  Lee SH  Kim Y  Kang SB  Shin J  Kwak MH  Kang KY  Lee YH  Park N  Min B 《Nature》2011,470(7334):369-373
Controlling the electromagnetic properties of materials, going beyond the limit that is attainable with naturally existing substances, has become a reality with the advent of metamaterials. The range of various structured artificial 'atoms' has promised a vast variety of otherwise unexpected physical phenomena, among which the experimental realization of a negative refractive index has been one of the main foci thus far. Expanding the refractive index into a high positive regime will complete the spectrum of achievable refractive index and provide more design flexibility for transformation optics. Naturally existing transparent materials possess small positive indices of refraction, except for a few semiconductors and insulators, such as lead sulphide or strontium titanate, that exhibit a rather high peak refractive index at mid- and far-infrared frequencies. Previous approaches using metamaterials were not successful in realizing broadband high refractive indices. A broadband high-refractive-index metamaterial structure was theoretically investigated only recently, but the proposed structure does not lend itself to easy implementation. Here we demonstrate that a broadband, extremely high index of refraction can be realized from large-area, free-standing, flexible terahertz metamaterials composed of strongly coupled unit cells. By drastically increasing the effective permittivity through strong capacitive coupling and decreasing the diamagnetic response with a thin metallic structure in the unit cell, a peak refractive index of 38.6 along with a low-frequency quasi-static value of over 20 were experimentally realized for a single-layer terahertz metamaterial, while maintaining low losses. As a natural extension of these single-layer metamaterials, we fabricated quasi-three-dimensional high-refractive-index metamaterials, and obtained a maximum bulk refractive index of 33.2 along with a value of around 8 at the quasi-static limit.  相似文献   
30.
目的 针对数据中心网络(Data Center Network, DCN)中数据流量多导致大象流与老鼠流识别精确度低的问题,提出一种基于软件定义网络(Software Defined Networking, SDN)下两阶段大象流识别算法。方法 将SDN与DCN结合,第一阶段,采用高斯分布动态阈值优化算法,通过对数据包阈值的设定,计算大象流误检率与漏检率,不断优化得到最优阈值,以此识别出可疑大象流;第二阶段,在依据流传输速率与流持续时间精确得到大象流的基础上,提出阈值约束、流量检测机制、Count计数器等三方面改进对大象流识别阈值下限的约束,将网络中大象流的数据量与流持续时间进行周期内阈值计算,提高大象流的识别精确度。结果 实验结果表明:算法与已有相关算法相比,第一阶段可疑大象流平均字节数比网络流平均字节数多11.3%;不同阈值下的算法准确度提高1.7%,不同网络流量下的大象流平均检测时间降低至6 ms以内。结论 软件定义网络下两阶段大象流识别算法在第一阶段具有较强的大象流识别能力,同时算法的精确度有所提高,大象流的平均检测时间降低,提高了网络质量,能为进行网络流量调度策略的进一步研究...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号